

LIN - A real Plug and Play System Page 1 of 7

LIN – A real “Plug 'n' Play” Bus System?

Standardized application functions enable the possibility for flexible, fast and cost effective LIN
developments. Therefore Plug ’n’ Play will also be possible for automotive LIN applications.

The continuous growth of electronic content in cars allows improvements in comfort, safety
and fuel economy. Integrating these functions requires the application of multiple bus
systems to guarantee that the applicable modules can communicate at the required speed
and safety levels. The vehicle manufacturers have developed different bus network
standards to minimize cost while maximizing the performance.

The latest development in this area is now accepted on all new development platforms: The
LIN bus (local interconnect network) - focusing primarily on the comfort area. Thanks to
LIN it is possible to affordably interconnect the steadily increasing number of comfort
functions. Additionally LIN can be implemented in applications that were previously
impossible to network due to the prohibitive incremental cost of the networking features.
New demands require new solutions. A pure IC development for LIN slaves now becomes a
complete system development.

The “typical” development path for LIN slaves
Typical LIN slave developments have many common points. Even though LIN slaves are usually
‘smart actuators’ or ‘smart sensors’, they are normally developed as electronic control units.

The supplier selects from familiar microcontroller choices the cheapest one with the appropriate
performance and memory size. Based on the OEM specification, the applicable hardware is built
around this microcontroller. A certified LIN2.x software API has to be applied to guarantee
interoperability. This way LIN slaves become ‘plug and play’ on the network side.

However what does this mean on the application side? On the application side, required functions
are implemented in software, meaning that for each LIN slave (see fig 1.) new application software
has to be developed. Various suppliers end up with different application software on different
microcontroller cores. Multiple developments stack up, creating a large demand on supplier
resources for development. Each of these implementations needs to be thoroughly tested, with a
risk of software bugs remaining.

The LIN conformance test only analyzes the LIN physical layer down to the API-function. Each
new implementation of a LIN slave has to be checked to confirm that the mandatory API support
functions have been implemented correctly. As with any software development flow, it is possible
that bugs will appear late in the development flow due to limited test coverage. The consequence
is that OEMs demand by default Flash controllers, adding additional IC complexity, memory size
and development cost, to allow for fast recovery from software bugs. In the LIN standard, and in
most OEM implementations, Flash reprogramming via the LIN bus has not been foreseen.
Therefore this feature is not standardized and requires significant test resources for each of the
different microcontroller concepts. The higher costs for certifying one class of microcontrollers
lowers the interest for suppliers to change towards a cheaper competitive offer.

Discrete developments using standard microcontrollers require verification for each new
application that the reaction time for LIN messages is guaranteed. The interrupt load from the
application can only influence the LIN communication up to the extent that the required response
timings are met. This may lead to the selection of a more powerful microcontroller than the
application itself requires. A possible solution to guarantee timings is through the use of operating
systems, which leads once more to additional demands on the microcontroller resources,

LIN - A real Plug and Play System Page 2 of 7

processing power and memory. The alternative is the use of dual core microcontrollers that split
the LIN communication task from the application task on the hardware level.

Figure 1 – Block diagram "typical" LIN Slave

In summary, when considering LIN slave developments in more detail, it becomes evident that
each new development with slight differences in requirements forces some changes in software or
hardware. Therefore LIN slaves are no longer plug and play, adding to system costs and risks.

The road to Plug and Play ready LIN slaves
How can Plug and Play LIN slaves be realized?

To answer this question, one should consider the commonalities between different applications.
Typically the LIN slave consists of a communication task that manages the data exchange
according to the LIN protocol, and an application task, that performs the actual function of the
slave.

The interoperability of the LIN task is defined in the LIN 2.x specification, and is guaranteed
through conformance tests, as well as additional tests at the vehicle manufacturer. This assures
plug and play on the LIN side.

How does this look on the application side? To realize standardization on this level, the slave
application should not be considered by itself, but in comparison to applications with very similar
demands.

When running this exercise it becomes obvious that many slaves have similarities. As example we
review one of the main LIN slave applications: LIN based switch modules. A switch, controlled
through LIN, is represented in each application as a single bit of data. The switch has to be
debounced according to an algorithm, in which the debounce times are defined by the applied type
of switch. Differences come only from the way the switch is implemented, i.e. to ground or to
supply, or as in a matrix configuration. Additional switch module functions include PWM control for
background illumination or function lighting.

LIN - A real Plug and Play System Page 3 of 7

Real plug and play is only possible when, identical to the LIN task, the applications are
standardized and configurable within practical limits.

Standardizing the LIN slave application functions
The ‘typical path’ for LIN slave development leads to a software development that can only be
used for one specific application. LIN slaves from different suppliers executing exactly the same
functionality look completely different. Today this is the standard practice. The individual
development costs of each unique LIN module implementation have to be written off over the
volumes. Thereby LIN may become prohibitively expensive for small volume platforms which
should have been one of the benefits of a LIN architecture.

How can we resolve this inefficiency, and make the adoption of LIN more attractive on a wider
scale?

First it is necessary to leave the ‘module level’ or even the sub-net level, and summarize the
common requirements of LIN slaves in different local networks. Clearly this needs a view of the full
car architecture and can only be executed with the vehicle manufacturer. The summary of all slave
requirements across the different sub-networks can then be analyzed. Specific differences
between the modules can be chosen as configurable on the slave side, or can be implemented on
the master side. This results in a totally new methodology of defining LIN slaves and application
functions. The initial effort required to consider the definition at a higher level will result in future
reductions of component cost. The reduction in development cost and risk offers additional
flexibility which will lead to faster time to market, and additional possibilities for product
differentiation and branding for the vehicle manufacturer.

Figure 2 – Definition of a “Plug and Play” LIN Slave

LIN - A real Plug and Play System Page 4 of 7

Melexis (www.melexis.com) has applied this system level approach for LIN slave definition in
collaboration with one of the major European vehicle manufacturers for the definition of a new
platform. The requirements from several switch modules (door, seat, steering wheel, dashboard,
roof, light switch) have been assembled. Additionally a message catalog has been defined and
slave specific functions have been implemented on the master. This resulted in the MLX80104
integrated LIN slave that is now configurable for a very wide range of switch module applications.
It can be applied on all these applications without the need for software development and re-
qualification.

Implementing a switch module as a genuine Plug and Play system
LIN switch modules typically consist of a microcontroller, a voltage regulator and a LIN transceiver.
The microcontroller should be capable to perform the different switch reading functions: single
switch, matrix, resistive encoded, and rotating encoder, with the appropriate debouncing.
Additionally it should be able to drive pulse width modulation (PWM) outputs for background
lighting and function lighting LEDs. Finally, besides these application specific tasks it should be
able to handle the different LIN dataframes. The above mentioned MLX80104 realizes all this in a
single chip LIN slave (fig 3).
The combination of LIN transceiver + voltage regulator and LIN handler realizes a LIN slave that is
certified from hardware as well as protocol point of view. This basic LIN subsystem is
complemented with high voltage I/O’s to realize I/O-extension applications like switch modules.

What makes this MLX80104 a real application specific standard product (ASSP)? How is it
optimized for low cost LIN I/O extension applications, and for switch reading in particular?

Figure 3 - Block diagram MLX80104

LIN - A real Plug and Play System Page 5 of 7

The unique concept of the MLX80104 resides in its dual core microcontroller. The dual core is
optimized for handling the LIN protocol task independently on hardware level from the application
task. Data exchange between the two tasks is synchronized by a hand shake protocol. This is
similar to an operating system but realized in hardware, eliminating the cost premium.

The MLX80104 can be configured to match the requirements of a specific application through the
setting of its EEPROM. The EEPROM is programmed End-Of-Line (EOL) using a dedicated EOL
programming protocol. The stored data is complemented with a hamming encoding to ensure data
integrity.

The LIN Task
The LIN task is responsible for the proper communication with the LIN master. The MLX80104 LIN
protocol is certified according to the LIN2.0 standard, the baud rate can be set up to 20 kbaud, and
diagnostic functions according to LIN2.0 are supported.

The initial LIN-IDs are configurable End-Of-Line in the EEPROM and can be modified by the
master via the “Node Configuration Service” (Assign NAD). Besides the “normal” frames,
bandwidth-saving “event triggered” frames are also supported.

The full message catalog has been defined in collaboration with the above mentioned vehicle
manufacturer. The table shows an example of the LIN frame “Switch Status”.

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Byte 7 8Bit AD Signal (ADC.3)

Byte 6 8Bit AD Signal (ADC.2)

Byte 5 8Bit AD Signal (ADC.1)

Byte 4 Node Error SW3.5 SW3.4 SW3.3 SW3.2 SW3.1 SW25

Byte 3 SW24 SW23 SW22 SW21 SW20 SW19 SW18 SW17

Byte 2 SW16 SW15 SW14 SW13 SW12 SW11 SW10 SW9

Byte 1 SW8 SW7 SW6 SW5 SW4 SW3 SW2 SW1

Byte 0 LIN PID Event Triggered
Figure 4 - LIN Frame "Switch Status"

Every I/O signal in the MLX80104 has been assigned to a dedicated set of bits in the message
catalog. The assignment of signals on application functions is controlled by the LIN Master.
The sleep mode timer is also settable End-Of-Line. The MLX80104 can be configured to wake up
from the LIN bus, from switch inputs, and from analog inputs.

The Applications Task
At the heart of the component resides the application task. The MLX80104 is configurable to meet
a variety of application requirements.

Up to 15 I/O’s can are available to flexibly read switches. These IO’s can be configured End-Of-
Line as single switches or as a matrix. Several I/O’s are high voltage, which allows the reading of
remote switches while protecting the IC from short circuits to supply or to ground. The I/O’s can
also be configured as output, for instance to control relays. Single switches and matrix switches

LIN - A real Plug and Play System Page 6 of 7

can be configured to detect wake up events. Debounce timings are set by the user according to
the needs of the specific switch types.

For background and function lighting 3 PWM outputs are available. The base frequency is the
same for all 3 PWMs and can be programmed End-Of-Line in a wide range to meet standard
automotive demands. Three 8bit Analog inputs are available to decode resistive encoded
switches.

Figure 5 – Application Samples

Customer specific data like production date, serial number etc, can be programmed in a dedicated
area of the EEPROM during End-Of-Line.

Figure 5 shows two different application samples, both built around the MLX80104 with only a
change in the EEPROM configuration.

The Development System
An evaluation kit is available to minimize the implementation effort around the component. This
allows the realization of complete switch module A-samples in a matter of days.

The evaluation kit consists of PC software (Figure 6) that communicates via USB with a Melexis
LIN Master that communicates via LIN with the switch module. These tools allow the user to
configure the component in End-Of-Line mode, as well as to communicate in the final application
mode.

LIN - A real Plug and Play System Page 7 of 7

Figure 6 – Configuration and Test Software

The communication uses the standard LIN protocol; therefore other LIN tools can be used to
communicate with the switch module as well. For serial production the programming sequence is
easy to implement on the user’s End-Of-Line tester.

Summary
A LIN slave developed in the ‘typical’ way bares additional costs due to the need for software
development and testing. To avoid this, a new LIN slave definition methodology is required. For
applications suitable to this ‘high level’ approach the specification should be done at the vehicle
architecture level in order to fully leverage the benefits of LIN as a low cost network solution. To
summarize the application requirements from the individual sub networks, collaboration with the
vehicle manufacturer is indispensable.

Michael Bender
Product Marketing Manager

Or for additional information contact Melexis Direct:

Europe, Africa, Asia: America:
Phone: +32 1367 0495 Phone: +1 603 223 2362

E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

ISO/TS 16949 and ISO14001 Certified

