
PTC04 PSF
Object Model Manual

PTC04 PROGRAMMER
PRODUCT SPECIFIC

FUNCTIONS

SOFTWARE LIBRARY

PTC04 PSF Library Object Model 15 February 2010 1 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

1 Overview
1 OVERVIEW 2

2 INTRODUCTION 4

3 OBJECT MODEL 4
3.1 OBJECT HIERARCHY 4
3.2 OBJECTS WITH INTERFACES 4

4 PTC04PSFMANAGER OBJECT 5

5 PTC04PSFDEVICE OBJECT 5
5.1 GLOBAL FUNCTIONS 7

5.1.1 ResetHardware Method 7
5.1.2 GetMainHardwareID Method 7
5.1.3 GetModuleHardwareID Method 8
5.1.4 GetSoftwareID Method 9
5.1.5 GetCPUConfiguration Method 10
5.1.6 SendCommand Method 11
5.1.7 SetPortE Method 12
5.1.8 SetPortF Method 13

5.2 EEPROM FUNCTIONS 14
5.2.1 GetContentsFromEEPROM Method 14
5.2.2 SetContentsToEEPROM Method 15
5.2.3 GetTextFromEEPROM Method 15
5.2.4 SetTextToEEPROM Method 16

5.3 I2C FUNCTIONS 18
5.3.1 I2CSendCommand Method 18
5.3.2 I2CGetContentsFromEE Method 18
5.3.3 I2CSetContentsToEE Method 19

5.4 RAM FUNCTIONS 21
5.4.1 GetContentsFromCoreRAM Method 21
5.4.2 SetContentsToCoreRAM Method 22
5.4.3 GetContentsFromXRAM Method 22
5.4.4 SetContentsToXRAM Method 23

5.5 PATTERN FUNCTIONS 25
5.5.1 SetTiming Method 25
5.5.2 SetLevel Method 25
5.5.3 RunSinglePattern Method 26
5.5.4 RunRAMSinglePattern Method 27
5.5.5 RunRAMMultiPattern Method 28
5.5.6 RunMultiPattern Method 28

5.6 MMF PATTERN FUNCTIONS 30
5.6.1 MmfOpenPattern Method 30
5.6.2 MmfClosePattern Method 30
5.6.3 MmfGetParameter Method 31
5.6.4 MmfSetParameter Method 32
5.6.5 MmfSetReadBuffer Method 33
5.6.6 MmfSetWriteBuffer Method 34
5.6.7 MmfRunPattern Method 34
5.6.8 MmfGetWriteBuffer Method 35
5.6.9 MmfSetVectorDefinition Method 36
5.6.10 MmfFileLogEnabled Property 37
5.6.11 MmfProcessLogEnabled Property 38

PTC04 PSF Library Object Model 15 February 2010 2 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.7 TIMING FUNCTIONS 39
5.7.1 GenerateFrequency Method 39

5.8 TIMING MEASUREMENTS FUNCTIONS 40
5.8.1 SetTimeoutPWM Method 40
5.8.2 GetDataPWM Method 40
5.8.3 GetValuePWM Method 41
5.8.4 GetFilteredValuePWM Method 42
5.8.5 GetFilteredPeriod Method 43
5.8.6 GetFilteredFrequency Method 44

5.9 DRIVERS FUNCTIONS 45
5.9.1 SetDAC Method 45
5.9.2 SetFastDAC Method 45
5.9.3 SetPPS Method 46
5.9.4 SetRelays Method 47
5.9.5 GetRelayStatus Method 47
5.9.6 SetCurrentLimitPPS Method 48

5.10 MEASURE FUNCTIONS 50
5.10.1 GetADC Method 50
5.10.2 GetFilteredADC Method 50
5.10.3 GetLevel Method 51
5.10.4 GetCurrent Method 52
5.10.5 SetMeasureDelay Method 52
5.10.6 SetMeasureFilter Method 53
5.10.7 SetSampleDelay Method 53
5.10.8 SelectChannel Method 54

5.11 CHANNEL NUMBERS 56
5.11.1 Sensing lines 56
5.11.2 Drivers and there channels 56

5.12 EXTENSION SUPPORT FUNCTIONS 57
5.12.1 SetDBIO Method 57
5.12.2 GetDBIO Method 57
5.12.3 WriteToDBExtension Method 58
5.12.4 ReadFromDBExtension Method 59

5.13 BOOTLOADER FUNCTIONS 60
5.13.1 EnterBootLoader Method 60
5.13.2 ExitBootLoader Method 60
5.13.3 BLGetHardwareID Method 61
5.13.4 BLGetSoftwareID Method 62
5.13.5 BLUploadIntelHexFile Method 63
5.13.6 BLSendIntelHexLine Method 63
5.13.7 BLVerifyIntelHexFile Method 64
5.13.8 BLVerifyIntelHexLine Method 65

5.14 PROPERTIES 66
5.14.1 ResponseTimeout Property 66
5.14.2 CommunicationLog Property 67

6 DISCLAMER 68

PTC04 PSF Library Object Model 15 February 2010 3 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

2 Introduction
PTC04 PSF is MS Windows software library, which meets the requirements for a Product Specific Functions
(PSF) module, defined in Melexis Programming Toolbox (MPT) object model. The library implements in-
process COM objects for interaction with Melexis PTC04 programmers. It is designed primarily to be used by
MPT Framework application, but also can be loaded as a standalone in-process COM server by other
applications that need to communicate with the above-mentioned Melexis hardware.

3 Object Model
MPT object model specifies that a PSF module must expose two COM objects which implement certain COM
interfaces. PTC04 PSF implements these two objects.

• PTC04PSFManager object – implements IPSFManager standard MPT interface. This is a standard
PSFManager object. MPT Framework and other client applications create a temporary instance of that
object, just for device scanning procedure. After that this instance is released.
This is the first required object. Refer to MPT Developer Reference document for more information about
PSFManager object and IPSFManager interface.

• PTC04PSFDevice object – implements IPTC04PSFDevice specific interface. However, this interface
derives from IMPTDevice standard MPT interface and therefore PTC04PSFDevice also implements the
functionality of MPTDevice standard MPT object. In addition to standard IMPTDevice methods,
IPTC04PSFDevice interface exposes methods, which are specific to this library. They are described in
this document.
This is the second required COM object. Refer to MPT Developer Reference document for more
information about MPTDevice object and IMPTDevice interface.

3.1 Object Hierarchy

3.2 Obje
 IPSFMana

PTC04PS
Manage

PTC04 PSF Library
Ver.1.62
PTC04PSFManager

g

r

PTC04PSFDevice
cts with interfaces
er IMPTDeviceIPTC04PSFDevice

F

PTC04PSFDevice

IDispatch
IDispatch

ISupportErrorInfo

ISpecifyPropertyPages
ISupportErrorInfo

IPersist

 Object Model 15 February 2010 4 of 68

PTC04 PSF
Object Model Manual

4 PTC04PSFManager Object
This object is created only once and is destroyed when the library is unmapped from process address space. Each
subsequent request for this object returns the same instance.

PTC04PSFManager object implements standard MPT category CATID_MLXMPTPSFSerialModule, which is
required for automatic device scanning. C++ standalone client applications can create an instance of this object
by using the standard COM API CoCreateInstance with class ID CLSID_PTC04PSFManager, or ProgID
“MPT. PTC04PSFManager”:

hRes = ::CoCreateInstance(CLSID_PTC04PSFManager, NULL, CLSCTX_INPROC,
IID_IPSFManager, (void**) &pPSFMan);

Visual Basic applications should call CreateObject function to instantiate PTC04PSFManager:

Set PSFMan = CreateObject(“MPT. PTC04PSFManager”)

The primary objective of this instantiation is to call ScanStandalone method. C++:

hRes = pPSFMan->ScanStandalone(dtSerial, varDevices, &pDevArray);

Or in Visual Basic:

Set DevArray = PSFMan.ScanStandalone(dtSerial)

ScanStandalone function returns collection of PTC04PSFDevice objects, one for each connected PTC-04
programmer. The collection is empty if there are no connected programmers.

5 PTC04PSFDevice Object
This object implements standard MPT category CATID_MLXMPTPSFSerialDevice as well as library specific
CATID_MLXMPTPTC04Device category. It also declares a required specific category
CATID_MLXMPTPTC04UIModule for identification of required user interface modules.

This object can be created directly with CoCreateInstance/CreateObject or by calling the device scanning
procedure ScanStandalone of PTC04PSFManager object. The following Visual Basic subroutine shows how to
instantiate PTC04PSFDevice object by performing device scan on the system:
Sub CreateDevice()
 Dim PSFMan As PTC04PSFManager, DevicesCol As ObjectCollection, I As Long
 On Error GoTo lError

 Set PSFMan = CreateObject("MPT.PTC04PSFManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtSerial)
 If DevicesCol.Count <= 0 Then
 MsgBox ("No PTC04 programmers found!")
 2Exit Sub
 End If

 ' Dev is a global variable of type PTC04PSFDevice
 ‘ Select first device from the collection
 Set Dev = DevicesCol(0)
 MsgBox (Dev.Name & " device found on " & Dev.Channel.Name)
 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 ' We are responsible to call Destroy(True) on the device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

PTC04 PSF Library Object Model 15 February 2010 5 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Developers can also manually connect the device object to a serial channel object thus bypassing standard device
scanning procedure. The following Visual Basic subroutine allows manual connection along with standard
device scanning depending on input parameter bAutomatic:
Sub CreateDevice(bAutomatic As Boolean)
 Dim PSFMan As PTC04PSFManager, DevicesCol As ObjectCollection, I As Long
 Dim CommMan As CommManager, Chan As MPTChannel
 On Error GoTo lError

 If bAutomatic Then
 ' Automatic device scanning begins here
 Set PSFMan = CreateObject("MPT.PTC04PSFManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtSerial)
 If DevicesCol.Count <= 0 Then
 MsgBox ("No PTC-04 programmers found!")
 Exit Sub
 End If

 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 'We are responsible to call Destroy(True) on device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Set MyDev = DevicesCol(0)
 Else
 ' Manual connection begins here
 Set CommMan = CreateObject("MPT.CommManager")
 Set MyDev = CreateObject("MPT.PTC04PSFDevice")
 I = ActiveWorkbook.Names("SerialPort").RefersToRange.Value2
 Set Chan = CommMan.Channels.CreateChannel(CVar(I), ctSerial)
 MyDev.Channel = Chan
 ' Check if a PTC04 programmer is connected to this channel
 Call MyDev.CheckSetup(False)
 End If
 MsgBox (MyDev.Name & " programmer found on " & MyDev.Channel.Name)
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

PTC04PSFDevice object implements IMPTDevice standard MPT interface. Please refer to MPT Developer
reference document for description of the properties and methods of this interface.

In addition PTC04PSFDevice object implements IPTC04PSFDevice library specific interface, which derives
from IMPTDevice. The following is a description of its properties and methods.

PTC04 PSF Library Object Model 15 February 2010 6 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.1 Global Functions

5.1.1 ResetHardware Method

Description

Resets the PTC04 programmer. Also exits from the bootloader mode.

Syntax

Visual Basic:
Sub ResetHardware()

C++:

HRESULT ResetHardware();

Parameters

None

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.2 GetMainHardwareID Method

Description

Sends GetHardwareID_Main command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetMainHardwareID([Format as Long = 1])

C++:

HRESULT GetMainHardwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarID);

PTC04 PSF Library Object Model 15 February 2010 7 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:

Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the hardware ID.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.3 GetModuleHardwareID Method

Description

Sends GetHardwareID_Module command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetModuleHardwareID([Format as Long = 1])

C++:

HRESULT GetModuleHardwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT*
pvarID);

PTC04 PSF Library Object Model 15 February 2010 8 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:

Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the hardware ID.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. * pvarID contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.4 GetSoftwareID Method

Description

Sends GetSoftwareID command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetSoftwareID([Format as Long = 1])

C++:

HRESULT GetSoftwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarID);

PTC04 PSF Library Object Model 15 February 2010 9 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:

Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the software ID.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.5 GetCPUConfiguration Method

Description

Sends GetCPUConfiguration command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Sub GetCPUConfiguration(FB0 As Byte, FB1 As Byte, FB2 As Byte, FB3 As Byte)

C++:

HRESULT GetCPUConfiguration(unsigned_char* FB0/*[out]*/, unsigned_char* FB1/*[out]*/,
 unsigned_char* FB2/*[out]*/, unsigned_char* FB3/*[out]*/);

Parameters

FB0, FB1, FB2, FB3
Addresses of Byte variables which on return will contain the corresponding CPU configuration bytes.

PTC04 PSF Library Object Model 15 February 2010 10 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.6 SendCommand Method

Description

Sends the requested command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function SendCommand(Cmd as Byte, [vParameters], [Format as Long = 1], [bCheck as

Boolean = True])

C++:
HRESULT SendCommand(/*[in]*/ unsigned char Cmd, /*[in][optional]*/ VARIANT

vParameters, /*[in]*/ long Format, /*[in]*/ VARIANT_BOOL
bCheck, /*[out][retval]*/ VARIANT* pvRes);

Parameters

Cmd
A Byte specifying the code of the command to send.

vParameters
A VARIANT containing optional command parameters. In case the command does not have parameters
it must be an empty variant. The value of the Format parameter is ignored in the latter case. Optional, the
default is an empty variant.

Format
A long specifying the format of the data in vParameters and the returned data in pvRes. Possible values
are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

bCheck
A Boolean controlling the execution of the method. If it is True (this is the default), the method will first
call standard CheckSetup method to check the connection with PTC-04 programmer and, if necessary, to
exit the bootloader mode. If it is False, the method will call a lightweight implementation of CheckSetup,
just to check if there is a communication channel. The programmer will be left in its current mode.

PTC04 PSF Library Object Model 15 February 2010 11 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

pvRes
An address of VARIANT variable that will receive the response from PTC-04 programmer. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the response from PTC-04 programmer.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvRes contains valid value.
Any other error code The operation failed. *pvRes contains an empty variant.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.1.7 SetPortE Method

Description

Overwrites data direction register (DDRE) as well as the PortE register of the PTC04 programmer and returns
the data read after the setting. For a detailed description of the PortE, see Atmega128.pdf document.

Syntax

Visual Basic:
Function SetPortE(DDRE as Byte, Data as Byte) as Byte

C++:

HRESULT SetPortE(/*[in]*/ unsigned char DDRE, /*[in]*/ unsigned char Data,
/*[out][retval]*/ unsigned char* pDataIn);

Parameters

DDRE
A Byte specifying the data direction of the PortE. Each bit may have independent direction (1=output ; 0
=input).

Data
A Byte specifying the data to be set in the PortE. If a particular bit is an input, it affects the Pull-up
activation.

pDataIn
An address of Byte variable which will receive the data read from the port after the setting.

Return value

Visual Basic:
A Byte containing the data read from the port after the setting.

PTC04 PSF Library Object Model 15 February 2010 12 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pDataIn contains valid value.
Any other error code The operation failed. *pDataIn contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.54 or higher.

5.1.8 SetPortF Method

Description

Overwrites data direction register (DDRF) as well as the PortF register of the PTC04 programmer and returns the
data read after the setting. For a detailed description of the PortF, see Atmega128.pdf document.

Syntax

Visual Basic:
Function SetPortF(DDRF as Byte, Data as Byte) as Byte

C++:

HRESULT SetPortF(/*[in]*/ unsigned char DDRF, /*[in]*/ unsigned char Data,
/*[out][retval]*/ unsigned char* pDataIn);

Parameters

DDRE
A Byte specifying the data direction of the PortF. Each bit may have independent direction (1=output ; 0
=input).

Data
A Byte specifying the data to be set in the PortF. If a particular bit is an input, it affects the Pull-up
activation.

pDataIn
An address of Byte variable which will receive the data read from the port after the setting.

Return value

Visual Basic:
A Byte containing the data read from the port after the setting.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pDataIn contains valid value.
Any other error code The operation failed. *pDataIn contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.54 or higher.

PTC04 PSF Library Object Model 15 February 2010 13 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.2 EEPROM Functions

5.2.1 GetContentsFromEEPROM Method

Description

Sends GetContentsFromEEPROM command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetContentsFromEEPROM(Addr as Integer, NrBytes as Integer, [Format as Long =
1])

C++:

HRESULT GetContentsFromEEPROM (/*[in]*/ short Addr, /*[in]*/ short NrBytes, /*[in]*/
long Format, /*[out][retval]*/ VARIANT* pvarContents);

Parameters

Addr
An Integer specifying 12-bit address in EEPROM to start reading from.

NrBytes
An Integer specifying how much bytes to read. Valid values are in the range [1 – 250].

Format
A long specifying the format of the returned data in pvarContents. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarContents. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarContents
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the contents of the EEPROM cells.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarContents contains a valid

value.
Any other error code The operation failed. *pvarContents contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 14 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.2.2 SetContentsToEEPROM Method

Description

Sends SetContentsToEEPROM command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetContentsToEEPROM(Addr as Integer, vData, [Format as Long = 1])

C++:

HRESULT SetContentsToEEPROM (/*[in]*/ short Addr, /*[in]*/ VARIANT vData, /*[in]*/
long Format);

Parameters

Addr
An Integer specifying 12-bit address in EEPROM to start writing from.

vData
A VARIANT containing the data to be written.

Format
A long specifying the format of the data in vData. Possible values are:
Value Format
1 vData is an array of bytes. This is the default value.
2 vData is an ANSI string packed in bstrVal member. This is the preferred format for C++

applications because of the best performance. It is a binary data so the string can contain
zeroes and may not be zero terminated.

3 vData is an Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.2.3 GetTextFromEEPROM Method

Description

Sends GetTextFromEEPROM command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetTextFromEEPROM(Addr as Integer) as String

PTC04 PSF Library Object Model 15 February 2010 15 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
HRESULT GetTextFromEEPROM (/*[in]*/ short Addr, /*[out][retval]*/ BSTR* pTxt);

Parameters

Addr
An Integer specifying 12-bit address in EEPROM to start reading from.

pTxt
An address of BSTR variable that will receive the return value of the method. The caller is responsible to
call SysFreeString on that variable when it is no longer needed.

Return value

Visual Basic:
A String containing the contents of the EEPROM cells.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pTxt contains a valid value.
Any other error code The operation failed. *pTxt contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.2.4 SetTextToEEPROM Method

Description

Sends SetTextToEEPROM command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetTextToEEPROM(Addr as Integer, Txt as String)

C++:

HRESULT SetTextToEEPROM (/*[in]*/ short Addr, /*[in]*/ BSTR Txt);

Parameters

Addr
An Integer specifying 12-bit address in EEPROM to start writing from.

Txt
A String containing the data to be written.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

PTC04 PSF Library Object Model 15 February 2010 16 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 17 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.3 I2C Functions

5.3.1 I2CSendCommand Method

Description

Sends Comm_I2C command to the PTC04 programmer.

Syntax

Visual Basic:
Sub I2CSendCommand(vOp, [Format as Long = 1])

C++:

HRESULT I2CSendCommand(/*[in]*/VARIANT vOp, /*[in]*/long Format)

Parameters

vOp
Specifies the command sequence.

Format
A long specifying the format of the data in vOp. Possible values are:
Value Format
1 vOp is an array of bytes. This is the default value.
2 vOp is an ANSI string packed in bstrVal member. This is the preferred format for C++

applications because of the best performance. It is a binary data so the string can contain
zeroes and may not be zero terminated.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.3.2 I2CGetContentsFromEE Method

Description

Sends GetContentsFrom_I2C_EE command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function I2CGetContentsFromEE(I2C_ID As Long, Addr As Long, n As Long, [Format as

Long = 1])

PTC04 PSF Library Object Model 15 February 2010 18 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
HRESULT I2CGetContentsFromEE(/*[in]*/long I2C_ID, /*[in]*/long Addr, /*[in]*/long n,
 /*[in]*/long Format, /*[out,retval]*/VARIANT* pvarContents);

Parameters

I2C_ID
I2C device number * 2.

Addr
An address in I2C EEPROM to start reading from.

n
Number of bytes to read. Valid values are in the range [1 – 250].

Format
A long specifying the format of the returned data in pvarContents. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarContents. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarContents
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the contents of the EEPROM cells.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarContents contains a valid

value.
Any other error code The operation failed. *pvarContents contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.3.3 I2CSetContentsToEE Method

Description

Sends SetContentsTo_I2C_EE command to the PTC04 programmer.

Syntax

Visual Basic:
Sub I2CSetContentsToEE(I2C_ID As Long, Addr As Long, vData, [Format as Long = 1])

PTC04 PSF Library Object Model 15 February 2010 19 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
HRESULT I2CSetContentsToEE(/*[in]*/long I2C_ID, /*[in]*/long Addr,
 /*[in]*/VARIANT vData, /*[in]*/long Format)

Parameters

I2C_ID
I2C device number * 2.

Addr
An address in I2C EEPROM to start writing from.

vData
A VARIANT containing the data to be written.

Format
A long specifying the format of the data in vData. Possible values are:
Value Format
1 vData is an array of bytes. This is the default value
2 vData is an ANSI string packed in bstrVal member. This is the preferred format for C++

applications because of the best performance. It is a binary data so the string can contain
zeroes and may not be zero terminated.

3 vData is an Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 20 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.4 RAM Functions

5.4.1 GetContentsFromCoreRAM Method

Description

Sends GetContentsFromCoreRAM command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetContentsFromCoreRAM(Addr as Long, NrBytes as Byte, [Format as Long = 1])

C++:

HRESULT GetContentsFromCoreRAM(/*[in]*/ long Addr, /*[in]*/ unsigned char NrBytes,
/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarContents);

Parameters

Addr
A Long specifying an address in core RAM to start reading from.

NrBytes
A Byte specifying how many bytes to read. Valid values are in the range [1 – 250].

Format
A long specifying the format of the returned data in pvarContents. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarContents. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarContents
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the contents of the core RAM cells.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarContents contains a valid

value.
Any other error code The operation failed. *pvarContents contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 21 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.4.2 SetContentsToCoreRAM Method

Description

Sends SetContentsToCoreRAM command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetContentsToCoreRAM(Addr as Long, vData, [Format as Long = 1])

C++:

HRESULT SetContentsToCoreRAM(/*[in]*/ long Addr, /*[in]*/ VARIANT vData, /*[in]*/ long
Format);

Parameters

Addr
A Long specifying an address in core RAM to start writing from.

vData
A VARIANT containing the data to be written.

Format
A long specifying the format of the data in vData. Possible values are:
Value Format
1 vData is an array of bytes. This is the default value.
2 vData is an ANSI string packed in bstrVal member. This is the preferred format for C++

applications because of the best performance. It is a binary data so the string can contain
zeroes and may not be zero terminated.

3 vData is an Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.4.3 GetContentsFromXRAM Method

Description

Sends GetContentsFromXRAM command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetContentsFromXRAM(Addr as Long, NrBytes as Byte, [Format as Long = 1])

PTC04 PSF Library Object Model 15 February 2010 22 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
HRESULT GetContentsFromXRAM(/*[in]*/ long Addr, /*[in]*/ unsigned char NrBytes, /*[in]*/
long Format, /*[out][retval]*/ VARIANT* pvarContents);

Parameters

Addr
A Long specifying an address in extended RAM to start reading from.

NrBytes
A Byte specifying how many bytes to read. Valid values are in the range [1 – 250].

Format
A long specifying the format of the returned data in pvarContents. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarContents. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarContents
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the contents of the extended RAM cells.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarContents contains a valid

value.
Any other error code The operation failed. *pvarContents contains zero.

Quick Info
Header: Declared in PTC04PSFModule_TLB.h.

5.4.4 SetContentsToXRAM Method

Description

Sends SetContentsToXRAM command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetContentsToXRAM(Addr as Long, vData, [Format as Long = 1])

C++:

HRESULT SetContentsToXRAM(/*[in]*/ long Addr, /*[in]*/ VARIANT vData, /*[in]*/ long
Format);

PTC04 PSF Library Object Model 15 February 2010 23 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Addr
A Long specifying an address in extended RAM to start writing from.

vData
A VARIANT containing the data to be written.

Format
A long specifying the format of the data in vData. Possible values are:
Value Format
1 vData is an array of bytes. This is the default value.
2 vData is an ANSI string packed in bstrVal member. This is the preferred format for C++

applications because of the best performance. It is a binary data so the string can contain
zeroes and may not be zero terminated.

3 vData is a Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 24 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.5 Pattern Functions

5.5.1 SetTiming Method

Description

Sends SetTiming command to the PTC04 programmer. It fills the timing array of the programmer.

Syntax

Visual Basic:
Sub SetTiming(TimingNr as Byte, Value as Long)

C++:

HRESULT SetTiming (/*[in]*/ unsigned char TimingNr, /*[in]*/ long Value);

Parameters

TimingNr
A Byte specifying an index in the timing array where to set the new value [0-31].

Value
A Long specifying the new value to set in the timing array.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.5.2 SetLevel Method

Description

Sends SetLevel command to the PTC04 programmer. It fills the levels array of the specified channel.

Syntax

Visual Basic:
Sub SetLevel(ChanNr as Byte, LevelNr as Byte, Value as Single)

C++:

HRESULT SetLevel (/*[in]*/ unsigned char ChanNr, /*[in]*/ unsigned char LevelNr, /*[in]*/
float Value);

PTC04 PSF Library Object Model 15 February 2010 25 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

ChanNr
A Byte specifying channel number [0-7]. A value from the predefined constants PPS1, PPS2 or PPS3
can also be used (this is only for the voltage channels). See Chapter Channel Numbers

LevelNr
A Byte specifying an array number [0-7].

Value
A float specifying the level in Volt or mA (depending on the channel).

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.5.3 RunSinglePattern Method

Description

Sends RunSinglePattern command to the PTC04 programmer. It runs a single pattern by using the indexed
TimingLevels and the indexed VoltageLevels.

Syntax

Visual Basic:
Sub RunSinglePattern(ChanNr as Byte, vPattern, [Format as Long = 1])

C++:

HRESULT RunSinglePattern (/*[in]*/ unsigned char ChanNr, /*[in]*/ VARIANT vPattern,
/*[in]*/ long Format);

Parameters

ChanNr
A Byte specifying channel number [0-7].

vPattern
A VARIANT containing an array of bytes that specify indexed TimingLevels and indexed
VoltageLevels.
The pattern contains both indexes in every byte:
T4 T3 T2 T1 T0 L2 L1 L0, where L0-L2 is level index [0-7] in level array and T4-T0 is time index [0-31]
in timing array

PTC04 PSF Library Object Model 15 February 2010 26 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Format
A long specifying the format of the data in vPattern. Possible values are:
Value Format
1 vPattern is an array of bytes. This is the default value.
2 vPattern is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.5.4 RunRAMSinglePattern Method

Description

Sends RunRAMSinglePattern command to the PTC04 programmer. It runs single pattern of Size bytes of the
external RAM staring from the assigned address Addr.

Syntax

Visual Basic:
Sub RunRAMSinglePattern(Addr as Long, Size as Long)

C++:

HRESULT RunRAMSinglePattern(/*[in]*/ long Addr, /*[in]*/ long Size);

Parameters

Addr
A Long specifying the address of the pattern in the external RAM.

Size
A Long specifying the pattern size in bytes.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 27 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.5.5 RunRAMMultiPattern Method

Description

Sends RunRAMMultiPattern command to the PTC04 programmer. It runs multi-pattern of Size bytes of the
external RAM, starting from the assigned address Addr.

Syntax

Visual Basic:
Sub RunRAMMultiPattern(Addr as Long, Size as Long)

C++:

HRESULT RunRAMMultiPattern(/*[in]*/ long Addr, /*[in]*/ long Size);

Parameters

Addr
A Long specifying the address of the pattern in the external RAM.

Size
A Long specifying the pattern size in bytes.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.5.6 RunMultiPattern Method

Description

Sends RunMultiPattern command to the PTC04 programmer. It runs immediate pattern of N bytes (N is the size
of the array in vPattern).

Syntax

Visual Basic:
Sub RunMultiPattern(vPattern, Format as Long)

C++:

HRESULT RunMultiPattern(/*[in]*/ VARIANT vPattern, /*[in]*/ long Format);

PTC04 PSF Library Object Model 15 February 2010 28 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

vPattern
A VARIANT containing the pattern. An array of bytes that specify indexed TimingLevels and indexed
VoltageLevels.
Unlike the single pattern, the multi pattern contains one index per byte:

Pattern Byte Structure

Command # Data Command Name
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Set DAC Value: 1 1 Dch2 Dch1 Dch0 L2 L1 L0
Set Fast DAC: 1 0 D5 D4 D3 D2 D1 D0
Measure ADC Channel: 0 1 0 0 CH3 CH2 CH1 CH0
Measure Fast ATmega: 0 1 1 1 x x CH1 CH0
Compare Fast ATmega: 0 1 1 0 Expec Res CH1 CH0
Wait / Pause: 0 0 X T4 T3 T2 T1 T0

Format
A Long specifying the format of the data in vPattern. Possible values are:
Value Format
1 vPattern is an array of bytes. This is the default value.
2 vPattern is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 29 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.6 MMF Pattern Functions

5.6.1 MmfOpenPattern Method

Description

This method loads a pattern from the specified MMF file. Returned ID number can be used in the other MMF
methods to specify this pattern.

Syntax

Visual Basic:
Function MmfOpenPattern(Filename as String, Pattern as String) as Long

C++:

HRESULT MmfOpenPattern(/*[in]*/ BSTR Filename, /*[in]*/ BSTR Pattern,
/*[out,retval]*/ long* PatternId);

Parameters

Filename
A String specifying the full path to the file containing referenced pattern.

Pattern
A String specifying the name of the required pattern. If this is an empty string, the global pattern of the
MMF file is loaded.

PatternId
An address of Long variable, which will receive the value of unique ID of the loaded pattern.

Return value

Visual Basic:
A Long, containing the value of unique ID of the loaded pattern.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. PatternId is not 0.
Any other error code The operation failed. PatternId is 0.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.2 MmfClosePattern Method

Description

This method closes a previously opened pattern. All resources (parameters, buffers, etc.) are released.

PTC04 PSF Library Object Model 15 February 2010 30 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Syntax

Visual Basic:
Sub MmfClosePattern(PatternId as Long)

C++:

HRESULT MmfClosePattern(/*[in]*/ long PatternId);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.3 MmfGetParameter Method

Description

This method gets the value of the specified parameter.

Syntax

Visual Basic:
Function MmfGetParameter(PatternId as Long, Name as String, Format as Long) as Variant

C++:

HRESULT MmfGetParameter(/*[in]*/ long PatternId, /*[in]*/ BSTR Name,
/*[in]*/ long Format, /*[out,retval]*/ VARIANT* pData);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

Name
A String specifying the name of the parameter.

Format
A long specifying the format of the returned data in pData. Possible values are:

Value Format

PTC04 PSF Library Object Model 15 February 2010 31 of 68
Ver.1.62

1 Return value is an array of bytes. This is the preferred format for Visual Basic
applications. This is the default value.

PTC04 PSF
Object Model Manual

2 Return value is an ANSI string packed in bstrVal member of *pData. This is the
preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pData
An address of VARIANT variable that will receive the parameter’s value. The caller is responsible to call
VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the parameter’s value.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.4 MmfSetParameter Method

Description

This method sets the value of the specified parameter.

Syntax

Visual Basic:
Sub MmfSetParameter(PatternId as Long, Name as String, Data as Variant, Format as Long)

C++:

HRESULT MmfSetParameter(/*[in]*/ long PatternId, /*[in]*/ BSTR Name,
/*[in]*/ VARIANT Data, /*[in,opt,defaultvalue(1)]*/ long Format);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

Name
A String specifying the name of the parameter.

Data
A VARIANT containing the data to be set as parameter’s value.

Format
A long specifying the format of the data in Data. Possible values are:
Value Format

PTC04 PSF Library Object Model 15 February 2010 32 of 68
Ver.1.62

1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This
is the default value.

PTC04 PSF
Object Model Manual

2 Data is an ANSI string packed in bstrVal member of Data. This is the preferred format
for C++ applications because of the best performance. It is a binary data so the string
can contain zeroes and may not be zero terminated. Such a string can be allocated by
SysAllocStringByteLen function.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.5 MmfSetReadBuffer Method

Description

This method allocates and fills data in a buffer that can be read by the pattern.

Syntax

Visual Basic:
Sub MmfSetReadBuffer(PatternId as Long, Data as Variant, Format as Long)

C++:

HRESULT MmfSetReadBuffer(/*[in]*/ long PatternId, /*[in]*/ VARIANT Data,
/*[in,opt,defaultvalue(1)]*/ long Format);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

Data
A VARIANT containing the data to be set as a read buffer for the pattern.

Format
A long specifying the format of the data in Data. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of Data. This is the preferred format

for C++ applications because of the best performance. It is a binary data so the string
can contain zeroes and may not be zero terminated. Such a string can be allocated by
SysAllocStringByteLen function.

PTC04 PSF Library Object Model 15 February 2010 33 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.6 MmfSetWriteBuffer Method

Description

This method allocates a buffer that can be written by the pattern.

Syntax

Visual Basic:
Sub MmfSetWriteBuffer(PatternId as Long, NBytes as Long)

C++:

HRESULT MmfSetWriteBuffer(/*[in]*/ long PatternId, /*[in]*/ long NBytes);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

NBytes
A long specifying the size of the buffer in bytes.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.7 MmfRunPattern Method

Description

This method runs the specified pattern. At the end it returns a Boolean, corresponding to the SUCCESS flag.

PTC04 PSF Library Object Model 15 February 2010 34 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Syntax

Visual Basic:
Function MmfRunPatter(PatternId as Long) as Boolean

C++:

HRESULT MmfRunPattern(/*[in]*/ long PatternId,
/*[out,retval]*/ VARIANT_BOOL* pResult);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

pResult
An address of VARIANT_BOOL variable that will receive the status of SUCCESS flag after execution.
The caller is responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Boolean containing the status of SUCCESS flag after execution.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.8 MmfGetWriteBuffer Method

Description

This method gets the contents of the write buffer.

Syntax

Visual Basic:
Function MmfGetWriteBuffer(PatternId as Long, Format as Long) as Variant

C++:

HRESULT MmfGetWriteBuffer(/*[in]*/ long PatternId, /*[in]*/ long Format,
/*[out,retval]*/ VARIANT* pData);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

Format

PTC04 PSF Library Object Model 15 February 2010 35 of 68
Ver.1.62

A long specifying the format of the returned data in pData. Possible values are:

PTC04 PSF
Object Model Manual

Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pData. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pData
An address of VARIANT variable that will receive the contents of the write buffer. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the contents of the write buffer.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.9 MmfSetVectorDefinition Method

Description

This method defines the MUST/MICE vector like in the beginning of a TVC file.
Note: This method changes the shape of the MUST/MICE bit, so it’s not recommended to use it unless it’s
confirmed by a Melexis engineer.

Syntax

Visual Basic:
Sub MmfSetVectorDefinition(PatternId as Long, Definition as String)

C++:

HRESULT MmfSetVectorDefinition(/*[in]*/ long PatternId, /*[in]*/ BSTR Definition);

Parameters

PatternId
A Long, specifying the pattern. Such an ID is obtained by MmfOpenPattern method.

PTC04 PSF Library Object Model 15 February 2010 36 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Definition
A String of 24 chars, specifying shape of the MUST/MICE bit. The first three are
MUST1, MUST0 and MICE for the first 1/8 of the bittime, next three - for the second 1/8 and so forth.
The default vector definition is:

MUST1 MUST0 MICE
0 1 X
0 1 X
0 1 X
D 1 X
D D X
D D X
D 1 D
0 1 X

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.59 or higher.

5.6.10 MmfFileLogEnabled Property

Description

This is a boolean property, which enables or disables logging during loading (not running) of patterns, i.e. during
MmfOpenPattern method execution.
By default this property is False.

Syntax

Visual Basic:
Property MmfFileLogEnabled as Boolean

C++:

HRESULT get_MmfFileLogEnabled(/*[out][retval]*/ VARIANT_BOOL * pValue);
HRESULT set_MmfFileLogEnabled(/*[in]*/ VARIANT_BOOL Value);

Parameters

pValue
An address of Boolean variable that receives current value of the property.

Value
A Boolean specifying new value for the property.

PTC04 PSF Library Object Model 15 February 2010 37 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.62 or higher.

5.6.11 MmfProcessLogEnabled Property

Description

This is a boolean property, which enables or disables logging running of patterns, i.e. during MmfRunPattern
method execution.
By default this property is False.

Syntax

Visual Basic:
Property MmfProcessLogEnabled as Boolean

C++:

HRESULT get_MmfProcessLogEnabled(/*[out][retval]*/ VARIANT_BOOL * pValue);
HRESULT set_MmfProcessLogEnabled(/*[in]*/ VARIANT_BOOL Value);

Parameters

pValue
An address of Boolean variable that receives current value of the property.

Value
A Boolean specifying new value for the property.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

Available in: version 1.62 or higher.

PTC04 PSF Library Object Model 15 February 2010 38 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.7 Timing Functions

5.7.1 GenerateFrequency Method

Description

Sends GenerateFrequency command to the PTC04 programmer. It will start generating PWM signal with the
specified frequency and duty cycle. The frequency is generated on pin PE3 of the PortE. For a detailed
description of the PortE, see Atmega128.pdf document.

Syntax

Visual Basic:
Sub GenerateFrequency(Frequency as Single, [DutyCycle as Single = 50])

C++:

HRESULT GenerateFrequency(/*[in]*/ float Frequency, /*[in,def,opt]*/ float DutyCycle);

Parameters

Frequency
A Single specifying the frequency in Hz [245..1000000].

DutyCycle
A Single specifying duty cycle of the resulting signal in [%]. Default value is 50.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.
Available in: Version 1.53 or higher.

PTC04 PSF Library Object Model 15 February 2010 39 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.8 Timing Measurements Functions

5.8.1 SetTimeoutPWM Method

Description

Sends SetTimeoutPWM command to the PTC04 programmer. It sets the timeout for PWM measurements.

Syntax

Visual Basic:
Sub SetTimeout(Time as Integer)

C++:

HRESULT SetTimeout(/*[in]*/ short Time);

Parameters

Time
An Integer specifying the timeout in [ms]. It must be a value between 4 and 1000.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.8.2 GetDataPWM Method

Description

Sends GetDataPWM command to the PTC04 programmer. It measures PWM signal on specified channel and
returns total period and the high part of the period. The measurement is done on pin PE4…7 of the PortE. For a
detailed description of the PortE, see Atmega128.pdf document.
The limits for the period of the PWM signal that can be measured by the method are:
- Minimum – 26 µs (37500 Hz). In this case minimum duty cycle is 8 µs.
- Maximum - 556 ms (1.8 Hz)

Syntax

Visual Basic:
Sub GetDataPWM(Channel as Byte, Edge as Byte, PeriodHigh as Single, PeriodTotal as Single)

C++:

HRESULT GetDataPWM(/*[in]*/ unsigned char Channel, /*[in]*/ unsigned char Edge, /*[out]*/
float* PeriodHigh, /*[out]*/ float* PeriodTotal);

PTC04 PSF Library Object Model 15 February 2010 40 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Channel
A Byte specifying channel number [0...3] [PE4...7]

Edge
A Byte specifying falling or rising edge to trigger the measurement.

PeriodHigh
An address of Single variable that will take the high part of the period.

PeriodTotal
An address of Single variable that will take the total period.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.8.3 GetValuePWM Method

Description

Sends GetValuePWM command to the PTC04 programmer. It measures PWM signal on specified channel and
returns pulse width and period as floating point values. The measurement is done on pin PE4…7 of the PortE.
For a detailed description of the PortE, see Atmega128.pdf document.
The limits for the period of the PWM signal that can be measured by the method are:
- Minimum – 26 µs (37500 Hz). In this case minimum duty cycle is 8 µs.
- Maximum - 556 ms (1.8 Hz)

Syntax

Visual Basic:
Sub GetValuePWM(Channel As Byte, Edge as Byte, PeriodHigh as Single, PeriodTotal as

Single)

C++:
HRESULT GetValuePWM(/*[in]*/ unsigned char Channel, /*[in]*/ unsigned char Edge,

/*[out]*/ float* PeriodHigh, /*[out]*/ float* PeriodTotal);

Parameters

Channel
A Byte specifying channel number [0…3] [PE4…7]

Edge
A Byte specifying falling or rising edge to trigger the measurement.

PeriodHigh

PTC04 PSF Library Object Model 15 February 2010 41 of 68
Ver.1.62

An address of Single variable that will take the high part of the period.

PTC04 PSF
Object Model Manual

PeriodTotal
An address of Single variable that will take the total period.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.8.4 GetFilteredValuePWM Method

Description

Sends GetValuePWM command to the PTC04 programmer. It measures “Filter” times PWM signal on specified
channel and returns average pulse width and period as floating point values. The measurement is done on pin
PE4…7 of the PortE. For a detailed description of the PortE, see Atmega128.pdf document.
The limits for the period of the PWM signal that can be measured by the method are:
- Minimum – 26 µs (37500 Hz). In this case minimum duty cycle is 8 µs.
- Maximum - 556 ms (1.8 Hz) for filter 1 and 91 ms (11 Hz) for filter 10 and above.

Syntax

Visual Basic:
Sub GetFilteredValuePWM(Channel As Byte , Edge as Byte, PeriodHigh as Single, PeriodTotal

as Single, Filter As Long)

C++:
HRESULT GetFilteredValuePWM(/*[in]*/ unsigned char Channel , /*[in]*/ unsigned char

Edge, /*[out]*/ float* PeriodHigh, /*[out]*/ float* PeriodTotal, /*[out]*/ long* Filter);

Parameters

Channel
A Byte specifying channel number [0...3] [PE4…7]

Edge
A Byte specifying falling or rising edge to trigger the measurement.

PeriodHigh
An address of Single variable that will take the high part of the period.

PeriodTotal
An address of Single variable that will take the total period.

Filter
An address of Long variable that will take the filter used for PWM measurements.

Return value

PTC04 PSF Library Object Model 15 February 2010 42 of 68
Ver.1.62

C++:

PTC04 PSF
Object Model Manual

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.8.5 GetFilteredPeriod Method

Description

Sends GetFilteredPeriod command to the PTC04 programmer. It measures multiple times PWM signal on
specified channel and returns average period in [us] as floating point value. Number of measurements must be
set in advance by SetMeasureFilter method. The measurement is done on pin PE4…7 of the PortE. For a detailed
description of the PortE, see Atmega128.pdf document.
The limits for the period of the PWM signal that can be measured by the method are:
- Minimum – 26 µs (37500 Hz). In this case minimum duty cycle is 8 µs.
- Maximum - 556 ms (1.8 Hz) for filter 1 and 91 ms (11 Hz) for filter 10 and above.

Syntax

Visual Basic:
Function GetFilteredPeriod(Channel As Byte, Edge as Byte) as Single

C++:

HRESULT GetFilteredPeriod(/*[in]*/ unsigned char Channel, /*[in]*/ unsigned char Edge,
/*[out, retval]*/ float* Period);

Parameters

Channel
A Byte specifying channel number [0..3] [PE4…7]

Edge
A Byte specifying falling or rising edge to trigger the measurement.

Period
An address of float variable that will take the period value in [us].

Return value

Visual Basic:
A Single containing the period value in [us].

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *Period contains a valid value.
Any other error code The operation failed. *Period is zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.
Available in: Version 1.53 or higher.

PTC04 PSF Library Object Model 15 February 2010 43 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.8.6 GetFilteredFrequency Method

Description

Calls GetFilteredPeriod method and returns average frequency of the signal in [Hz] as floating point value.
Number of measurements must be set in advance by SetMeasureFilter method. The measurement is done on pin
PE4…7 of the PortE. For a detailed description of the PortE, see Atmega128.pdf document.
The limits for the period of the PWM signal that can be measured by the method are:
- Minimum – 26 µs (37500 Hz). In this case minimum duty cycle is 8 µs.
- Maximum - 556 ms (1.8 Hz) for filter 1 and 91 ms (11 Hz) for filter 10 and above.

Syntax

Visual Basic:
Function GetFilteredFrequency(Channel As Byte, Edge as Byte) as Single

C++:

HRESULT GetFilteredFrequency(/*[in]*/ unsigned char Channel, /*[in]*/ unsigned char Edge,
/*[out, retval]*/ float* Frequency);

Parameters

Channel
A Byte specifying channel number [0…3] [PE4…7]

Edge
A Byte specifying falling or rising edge to trigger the measurement.

Frequency
An address of float variable that will take the frequency value in [Hz].

Return value

Visual Basic:
A Single containing the frequency value in [Hz].

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *Frequency contains a valid value.
Any other error code The operation failed. *Frequency is zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.
Available in: Version 1.53 or higher.

PTC04 PSF Library Object Model 15 February 2010 44 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.9 Drivers Functions

5.9.1 SetDAC Method

Description

Sends SetDAC command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetDAC(DACNr as Byte, Code as Long)

C++:

HRESULT SetDAC (/*[in]*/ unsigned char DACNr, /*[in]*/ long Code);

Parameters

DACNr
A Byte specifying DAC number [0-7].
See Chapter Channel Numbers.

Code
A Long value to set DAC.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.9.2 SetFastDAC Method

Description

Sends SetFastDAC command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetFastDAC(DACNr as Byte, Code as Long)

C++:

HRESULT SetFastDAC (/*[in]*/ unsigned char DACNr, /*[in]*/ long Code);

PTC04 PSF Library Object Model 15 February 2010 45 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

DACNr
A Byte specifying DAC number [0].

Code
A Long value to set DAC.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.9.3 SetPPS Method

Description
Sends SetPPS command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetPPS(ChanNr as Long, Vout as Single)

C++:

HRESULT SetPPS (/*[in]*/ long ChanNr, /*[in]*/ float Vout);

Parameters

ChanNr
A Long specifying PPS number [0-7]. A value from the predefined constants PPS1, PPS2 or PPS3 can
also be used to specify the PPS number (this is only for the voltage channels).
See Chapter Channel Numbers

Vout
A float in Volt for the channels 0, 1, 2, 3 or in mA for the channels 4, 5, 6.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 46 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.9.4 SetRelays Method

Description

Sends SetRelays command to the PTC04 programmer. Set Relay is the command used to activate the PPS
drivers.

Syntax

Visual Basic:
Sub SetRelays(Relays As Byte, Status As Byte)

C++:

HRESULT SetRelays(/*[in]*/ unsigned char Relays, /*[in]*/ unsigned char Status);

Parameters

Relays
All bits equal to 1 point a relay to be changed (not all relays must be activated).
See Chapter Channel Numbers

Status
Every corresponding bit will set the activated relay to the status of the bit.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Example

When Relays = 0010 0001 and Status = 0000 1111
Then relay 0 will be closed and relay 5 will be opened. The other entire are not touched.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.9.5 GetRelayStatus Method

Description

Sends GetRelayStatus command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetRelayStatus() As Byte

C++:

HRESULT GetRelayStatus(/*[out, retval]*/ unsigned char* pbtRelays);

PTC04 PSF Library Object Model 15 February 2010 47 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

C++:
pbtRelays
An address of byte variable that will receive the status of all relays. Each bit specifies the status of the
corresponding relay: 0 – OFF, 1 - ON.

Return value

Visual Basic:
A Byte which is the status of all relays. Each bit specifies the status of the corresponding relay: 0 –
OFF, 1 - ON.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.9.6 SetCurrentLimitPPS Method

Description

Calls SetPPS method in order to set the current limit for particular PPS.

Syntax

Visual Basic:
Sub SetPPS(PPS as Byte, Level as Single)

C++:

HRESULT SetCurrentLimitPPS (/*[in]*/ unsigned char PPS, /*[in]*/ float Level);

Parameters

PPS
A Byte specifying PPS number [1-3]. A value from the predefined constants PPS1, PPS2 or PPS3 can
also be used to specify the PPS number.
See chapter Channel Numbers.

Level
A Single specifying the desired current limit in mA.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

PTC04 PSF Library Object Model 15 February 2010 48 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 49 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.10 Measure Functions

5.10.1 GetADC Method

Description

Sends GetADC command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetADC(ChanNr as Byte) as Long

C++:

HRESULT GetADC (/*[in]*/ unsigned char ChanNr, /*[out, retval]*/ long* plVal);

Parameters

ChanNr
A Byte specifying channel number [0-31]. See chapter Channel Numbers.

plVal
An address of long variable that will receive the return value in the low order word. High order word is
not used and is always zero.

Return value

Visual Basic:
A Long containing the result of ADC in the low order word. High order word is not used and is
always zero.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *plVal contains a valid value.
Any other error code The operation failed. *plVal contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.2 GetFilteredADC Method

Description

Sends GetFilteredADC command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetFilteredADC(ChanNr as Byte) as Single

C++:

HRESULT GetFilteredADC (/*[in]*/ unsigned char ChanNr, /*[out, retval]*/ float* pResult);

PTC04 PSF Library Object Model 15 February 2010 50 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

ChanNr
A Byte specifying channel number [0-31]. See chapter Channel Numbers.

pResult
An address of float variable that will receive the return value.

Return value

Visual Basic:
A Single containing the result of ADC.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pResult contains a valid value.
Any other error code The operation failed. *pResult contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.3 GetLevel Method

Description

Sends GetLevel command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetLevel(ChanNr as Byte) as Single

C++:

HRESULT GetLevel (/*[in]*/ unsigned char ChanNr, /*[out, retval]*/ float* fResult);

Parameters

ChanNr
A Byte specifying channel number [0-7]. A value from the predefined constants PPS1, PPS2 or PPS3
can also be used (this is only for the voltage channels). See chapter Channel Numbers.

fResult
An address of float variable that will receive the return value.

Return value

Visual Basic:
A Single containing the result.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *fResult contains a valid value.
Any other error code The operation failed. *fResult contains zero.

PTC04 PSF Library Object Model 15 February 2010 51 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.4 GetCurrent Method

Description

Sends GetCurrent command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetCurrent(ChanNr as Byte) as Single

C++:

HRESULT GetCurrent (/*[in]*/ unsigned char ChanNr, /*[out, retval]*/ float* fResult);

Parameters

ChanNr
A Byte specifying channel number [0-7]. A value from the predefined constants PPS1, PPS2 or PPS3
can also be used to specify a PPS to measure its current. See chapter Channel Numbers.

fResult
An address of float variable that will receive the return value.

Return value

Visual Basic:
A Single containing the result.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *fResult contains a valid value.
Any other error code The operation failed. *fResult contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.5 SetMeasureDelay Method

Description

Sends SetMeasureDelay command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetMeasureDelay(Delay as Long)

C++:

HRESULT SetMeasureDelay(/*[in]*/ long Delay);

PTC04 PSF Library Object Model 15 February 2010 52 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Parameters

Delay
A Long specifying the new value for measure delay.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.6 SetMeasureFilter Method

Description

Sends SetMeasureFilter command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetMeasureFilter(Nmeas as Integer)

C++:

HRESULT SetMeasureDelay(/*[in]*/ short Nmeas);

Parameters

Nmeas
An Integer specifying the new value for number of measurements.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.7 SetSampleDelay Method

Description

Sends SetSampleDelay command to the PTC04 programmer.

PTC04 PSF Library Object Model 15 February 2010 53 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Syntax

Visual Basic:
Sub SetSampleDelay(Delay as Long)

C++:

HRESULT SetSampleDelay(/*[in]*/ long Delay);

Parameters

Delay
A Long specifying the new value for sample delay.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.10.8 SelectChannel Method

Description

Sends SelectChannel command to the PTC04 programmer.
Note: This method is not intended for independent calling by the user. It is called internally by measuring
methods when necessary.

Syntax

Visual Basic:
Sub SelectChannel (NrChannel as Byte)

C++:

HRESULT SelectChannel(/*[in]*/ unsigned char NrChannel);

Parameters

NrChannel
A Byte specifying channel number.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

PTC04 PSF Library Object Model 15 February 2010 54 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 55 of 68
Ver.1.62

P
T

C
04

 P
S

F

O
b

je
c

t
M

o
d

e
l

M
a

n
u

a
l

5
.1

1

C
h

a
n

n
e

l
N

u
m

b
e

rs

5
.1

1
.1

S

e
n

s
in

g
 l

in
e

s

Vo
lta

ge

N
am

e
A

D
C

 c
ha

nn
el

A

D
C

 H
ig

h
se

ns
iti

vi
ty

 c
ha

nn
el

S

en
si

ng
 L

in
e

1
12

28

S

en
si

ng
 L

in
e

2
13

29

S

en
si

ng
 L

in
e

3
14

30

S

en
si

ng
 L

in
e

4
15

31

U

se
 fo

r t
he

Fu

nc
tio

ns

G
et

A
D

C

G
et

Fi
lte

re
dA

D
C

G

et
Le

ve
l

S
el

ec
tC

ha
nn

el

G
et

A
D

C

G
et

Fi
lte

re
dA

D
C

G

et
Le

ve
l

S
el

ec
tC

ha
nn

el

5
.1

1
.2

D

ri
v
e

rs
 a

n
d

 t
h

e
re

 c
h

a
n

n
e

ls

Vo

lta
ge

C

ur
re

nt

Ex
tr

a
D

riv
er

N

am
e

D
A

C
 c

ha
nn

el

A
D

C

ch
an

ne
l

A
D

C
 H

ig
h

se
ns

iti
vi

ty

ch
an

ne
l

N
am

e
D

A
C

 c
ha

nn
el

A

D
C

ch

an
ne

l
Sh

ut
 D

ow
n

PP
S

C
on

st
an

t

1
P

P
S

1

0

0
16

P
P

S
5

4
1

1
P

P
S

1
=

10
0

2
P

P
S

2

1

2
18

P
P

S
6

5
3

2
P

P
S

2
=

10
1

3
P

P
S

3

2

4
20

P
P

S
7

6
5

4
P

P
S

3
=

10
2

4
P

P
S

4

3

6
22

/
/

7
8

U

se
 fo

r t
he

Fu

nc
tio

ns

S

et
D

A
C

S

et
P

P
S

S

et
Le

ve
l

G
et

A
D

C

G
et

Fi
lte

re
dA

D
C

G

et
Le

ve
l

S
el

ec
tC

ha
nn

el

G
et

A
D

C

G
et

Fi
lte

re
dA

D
C

G

et
Le

ve
l

S
el

ec
tC

ha
nn

el

S
et

D
A

C
S

et
P

P
S

S

et
Le

ve
l

G
et

A
D

C

G
et

Fi
lte

re
dA

D
C

G

et
Le

ve
l

S
el

ec
tC

ha
nn

el

G
et

C
ur

re
nt

S
et

R
el

ay
s

G
et

R
el

ay
S

ta
tu

s
S

et
C

ur
re

nt
Li

m
itP

P
S

G

et
C

ur
re

nt

S
et

Le
ve

l
S

et
P

P
S

G

et
Le

ve
l

 PT
C

04
 P

SF
 L

ib
ra

ry
 O

bj
ec

t M
od

el

15

 F
eb

ru
ar

y
20

10

 5
6

of
 6

8
V

er
.1

.6
2

PTC04 PSF
Object Model Manual

5.12 Extension Support Functions

5.12.1 SetDBIO Method

Description

Sends SetDBIO command to the PTC04 programmer.

Syntax

Visual Basic:
Sub SetDBIO(Data as Byte)

C++:

HRESULT SetDBIO(/*[in]*/ unsigned char Data);

Parameters

Data
A Byte specifying the new value for signals F8-FF to the Daughterboard.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.12.2 GetDBIO Method

Description

Sends GetDBIO command to the PTC04 programmer and returns the response.

Syntax

Visual Basic:
Function GetDBIO() as Byte

C++:

HRESULT GetDBIO(/*[out, retval]*/ unsigned char* pData);

Parameters

pData
An address of Byte variable that will receive the state of the eight DB-IO bits.

PTC04 PSF Library Object Model 15 February 2010 57 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

Visual Basic:
A Byte containing the state of the eight DB-IO bits.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pData contains a valid value.
Any other error code The operation failed. *pData contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.12.3 WriteToDBExtension Method

Description

Sends WriteToDBExtension command to the PTC04 programmer. It modifies the external address area F800 till
FFFF.

Syntax

Visual Basic:
Sub WriteToDBExtension(Addr as Integer, Data as Byte)

C++:

HRESULT WriteToDBExtension(/*[in]*/ short Addr, /*[in]*/ unsigned char Data);

Parameters

Addr
An Integer specifying the address to write at.

Data
A Byte specifying the new value for extended address area.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 58 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.12.4 ReadFromDBExtension Method

Description

Sends ReadFromDBExtension command to the PTC04 programmer. It reads data from from the extended
address area F800 till FFFF.

Syntax

Visual Basic:
Function ReadFromDBExtension(Addr as Integer) as Byte

C++:

HRESULT ReadFromDBExtension(/*[in]*/ short Addr, /*[out, retval]*/ unsigned char
*pbData);

Parameters

Addr
An Integer specifying the address to read from.

pbData
An address of Byte variable that will receive the value from the extended address area.

Return value

Visual Basic:
A Byte containing the value from the extended address area.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 59 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.13 BootLoader Functions

5.13.1 EnterBootLoader Method

Description

Sends Goto_BootLoader command to the PTC04 programmer.

Syntax

Visual Basic:
Function EnterBootLoader() As Byte

C++:

HRESULT EnterBootLoader(/*[out, retval]*/ unsigned char* pbtMode);

Parameters

pbtMode
An address of byte variable that will receive the mode of the bootloader software after executing the
command: 1 – start-up mode, 2 – programming mode, 0 – an error has occurred.

Return value

Visual Basic:
A Byte containing the mode of the bootloader software after executing the command: 1 – start-up
mode, 2 – programming mode, 0 – an error has occurred.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pbtMode contains a valid value.
Any other error code The operation failed. *pbtMode contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.2 ExitBootLoader Method

Description

Sends Exit_BootLoader command to the PTC04 programmer.

Syntax

Visual Basic:
Sub ExitBootLoader()

C++:

HRESULT ExitBootLoader();

PTC04 PSF Library Object Model 15 February 2010 60 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.3 BLGetHardwareID Method

Description

Sends GetHardwareID_Main command to the PTC04 programmer in bootloader mode and returns the response.
The method automatically sends Goto_BootLoader command to ensure it is in bootloader mode. The caller is
responsible to call ExitBootLoader after that if it is necessary.

Syntax

Visual Basic:
Function BLGetHardwareID([Format As Long = 1])

C++:

HRESULT BLGetHardwareID(/*[in,def]*/long Format, /*[out, retval]*/ VARIANT* pvarID);

Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the hardware ID.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

PTC04 PSF Library Object Model 15 February 2010 61 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.4 BLGetSoftwareID Method

Description

Sends GetSoftwareID command to the PTC04 programmer in bootloader mode and returns the response. The
method automatically sends Goto_BootLoader command to ensure it is in bootloader mode. The caller is
responsible to call ExitBootLoader after that if it is necessary.

Syntax

Visual Basic:
Function BLGetSoftwareID([Format As Long = 1])

C++:

HRESULT BLGetSoftwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarID);

Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

Return value

Visual Basic:
A Variant containing the software ID.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 62 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.13.5 BLUploadIntelHexFile Method

Description

Uploads Hex file with firmware into the PTC04 programmer. The programmer is left in bootloader mode if this
function returns with success.

Syntax

Visual Basic:
Sub BLUploadIntelHexFile(FileName As String, Progress As Object, [vHint])

C++:

HRESULT BLUploadIntelHexFile(/*[in]*/BSTR FileName,
 /*[in]*/LPDISPATCH Progress,
 /*[in,opt]*/VARIANT vHint);

Parameters

FileName
Specifies full path name of the Hex file.

Progress
Object that implements IMPTProgressCallback interface. It should have implementation of methods
OnStart, OnProgress and OnEnd. Nothing (NULL) can be passed if the callback is not needed.

vHint
A Variant that is sent back to callback object as parameter in Onxxx methods.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.6 BLSendIntelHexLine Method

Description

Sends SendIntelHexFile command to the PTC04 programmer. The programmer must be in bootloader
programming mode in order to execute this command properly.

Syntax

Visual Basic:
Sub BLSendIntelHexLine(vHLine, [Format As Long = 1])

PTC04 PSF Library Object Model 15 February 2010 63 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

C++:
HRESULT BLSendIntelHexLine(/*[in]*/VARIANT vHLine, /*[in]*/long Format);

Parameters

vHLine
Specifies one line of a Hex file to be programmed.

Format
A long specifying the format of the data in vHLine. Possible values are:
Value Format
1 vHLine is an array of bytes. This is the default value.
2 vHLine is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

3 vHLine is an Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.7 BLVerifyIntelHexFile Method

Description

Compares firmware that is currently in the programmer with one in selected hex file.

Syntax

Visual Basic:
Sub BLVerifyIntelHexFile(FileName As String, Progress As Object, [vHint])

C++:

HRESULT BLVerifyIntelHexFile (/*[in]*/BSTR FileName,
 /*[in]*/LPDISPATCH Progress,
 /*[in,opt]*/VARIANT vHint);

Parameters

FileName
Specifies full path name of the Hex file.

Progress
Object that implements IMPTProgressCallback interface. It should have implementation of methods
OnStart, OnProgress and OnEnd. Nothing (NULL) can be passed if the callback is not needed.

vHint
A Variant that is sent back to callback object as parameter in Onxxx methods.

PTC04 PSF Library Object Model 15 February 2010 64 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

5.13.8 BLVerifyIntelHexLine Method

Description

Compares one line from the hex file with corresponding data of the firmware currently present in the
programmer.

Syntax

Visual Basic:
Sub BLVerifyIntelHexLine(vHLine, [Format As Long = 1])

C++:

HRESULT BLVerifyIntelHexLine(/*[in]*/VARIANT vHLine, /*[in]*/long Format);

Parameters

vHLine
Specifies one line of a Hex file to be compared.

Format
A long specifying the format of the data in vHLine. Possible values are:
Value Format
1 vHLine is an array of bytes. This is the default value.
2 vHLine is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

3 vHLine is an Unicode string.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 65 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.14 Properties

5.14.1 ResponseTimeout Property

Description

This property gets/sets the time (in ms) that is allowed to elapse before signaling timeout for a particular
operation. During this period PTC-04 programmer should start sending the response/acknowledge for the
operation or else the communication layer will generate an error.
The following methods utilize this parameter:

SetContentsToEEPROM
SetTextToEEPROM
GetADC
GetFilteredADC
GetLevel
GetCurrent
I2CSendComand
I2CSetContentsToEE
RunSinglePattern
RunRAMMultiPattern
RunMultiPattern
RunRAMSinglePattern
GetDataPWM
GetValuePWM
GetFilteredValuePWM

The default value for this property is 2000 (2 sec).

Syntax

Visual Basic:
Property ResponseTimeout as Long

C++:

HRESULT get_ResponseTimeout(/*[out][retval]*/ long* pValue);
HRESULT set_ResponseTimeout(/*[in]*/ long Value);

Parameters

pValue
An address of long variable that receives current value of the property.

Value
A long specifying new value for the property.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pValue contains a valid pointer.
Any other error code The operation failed. *pValue contains NULL.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 66 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

5.14.2 CommunicationLog Property

Description

This is a boolean property, which enables or disables logging of data transmitted through the communication
channel. The default value for this property is False.

Syntax

Visual Basic:
Property CommunicationLog as Boolean

C++:

HRESULT get_CommunicationLog(/*[out][retval]*/ VARIANT_BOOL * pValue);
HRESULT set_CommunicationLog(/*[in]*/ VARIANT_BOOL Value);

Parameters

pValue
An address of Boolean variable that receives current value of the property.

Value
A Boolean specifying new value for the property.

Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

Quick Info

Header: Declared in PTC04PSFModule_TLB.h.

PTC04 PSF Library Object Model 15 February 2010 67 of 68
Ver.1.62

PTC04 PSF
Object Model Manual

6 Disclamer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2010 Melexis NV. All rights reserved.

For the latest version of this document, go to our website at
www.melexis.com

Or for additional information contact Melexis Direct:

Europe, Africa, Asia:

Phone: +32 13 670 495
E-mail: sales_europe@melexis.com

America:
Phone: +1 603 223 2362

E-mail: sales_usa@melexis.com

ISO/TS 16949 and ISO14001 Certified

PTC04 PSF Library Object Model 15 February 2010 68 of 68
Ver.1.62

http://www.melexis.com/
mailto:sales_europe@melexis.com
mailto:sales_usa@melexis.com

	Object Hierarchy
	Objects with interfaces
	Global Functions
	EEPROM Functions
	I2C Functions
	RAM Functions
	Pattern Functions
	MMF Pattern Functions
	Timing Functions
	Timing Measurements Functions
	Drivers Functions
	Measure Functions
	Channel Numbers
	Extension Support Functions
	BootLoader Functions
	Properties

