
EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 1 -
Ver.1.9.0

MLX90632 PRODUCT
SPECIFIC FUNCTIONS

SOFTWARE LIBRARY

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 2 -
Ver.1.9.0

1 Contents

1 CONTENTS .. 2

2 INTRODUCTION .. 4

3 SOFTWARE STRUCTURE .. 4

3.1 Object Model .. 4
3.2 Objects with Interfaces ... 5

4 PSF090632EVMLXMANAGER OBJECT... 6

4.1 Background ... 6

5 PSF090632EVMLXDEVICE OBJECT .. 7

5.1 Background ... 7
5.2 Scope of the PSF090632EVMLXDevice object ... 8
5.3 Advanced Property ... 8
5.4 ChipVersion Property ... 9
5.5 EVBGeneral Property ... 10
5.6 Emissivity Property ... 10
5.7 MeasurementRange Property .. 11
5.8 ReadFullEeprom Method .. 12
5.9 ProgramEeprom Method ... 13
5.10 DeviceReplaced Method ... 13
5.11 GetEEParameterCode Method .. 14
5.12 SetEEParameterCode Method .. 15
5.13 GetEEParameterValue Method ... 15
5.14 SetEEParameterValue Method ... 16
5.15 GetEEData Method ... 17
5.16 SetEEData Method ... 18
5.17 SetVdd Method ... 19
5.18 MeasureSupply Method .. 19
5.19 ContactTest Method .. 20
5.20 ReadMem Method .. 20
5.21 WriteMem Method ... 21
5.22 ReadSingleFrame Method .. 22
5.23 ReadSingleFrameEx Method .. 23
5.24 CmdReset Method .. 24
5.25 ReadChipVersion Method .. 25

6 PSF090632EVMLXADVANCED OBJECT ... 26

6.1 Background ... 26
6.2 Scope of the PSF090632EVMLXAdvanced object .. 26
6.3 Logging Property .. 26
6.4 QuietCheck Property ... 27
6.5 EepromWritable Property ... 27
6.6 GetSetting Method .. 28
6.7 SetSetting Method... 29
6.8 OpenProfile Method ... 30
6.9 SaveProfile Method .. 30
6.10 SaveProfileAs Method .. 31
6.11 I2CWriteRead Method .. 31

7 ENUMERATION CONSTANTS .. 33

7.1 ParameterCodesEEPROM enumeration ... 33

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 3 -
Ver.1.9.0

7.2 SettingCodes enumeration .. 35
7.3 ChipVersionCodes enumeration ... 35
7.4 DataProcessingTypes enumeration ... 35
7.5 MeasurementRangeTypes enumeration .. 36

8 HISTORY RECORDS ... 37

9 DISCLAIMER .. 37

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 4 -
Ver.1.9.0

2 Introduction
MLX90632 PSF is MS Windows software library, which meets the requirements for a Product Specific
Functions (PSF) module, defined in Melexis Programmable Toolbox (MPT) object model. The library
implements in-process COM objects for interaction with MLX90632 EVB firmware. It is designed primarily to
be used by MPT Framework application, but also can be loaded as a standalone in-process COM server by other
applications that need to communicate with the above-mentioned Melexis hardware.

The library can be utilized in all programming languages, which support ActiveX automation. This gives great
flexibility in designing the application with the only limitation to be run on MS Windows OS. In many scripting
languages, objects can be directly created and used. In others, though, the first step during implementation is to
include the library in your project. The way it can be done depends on the programming language and the
specific Integrated Development Environment (IDE) used:

 in C++ it can be imported by #import directive

 in Visual Basic it either can be directly used as pure Object or added as a reference to the project

 in C# it has to be added as a reference to the project

 in NI LabView, for each Automation refnum the corresponding ActiveX class has to be selected

 in NI LabWindows an ActiveX Controller has to be created

3 Software Structure

3.1 Object Model
MPT object model specifies that a PSF module must expose two COM objects which implement certain COM
interfaces. MLX90632 PSF implements these two objects and two additional objects for advanced operations.

 PSF090632EVMLXManager object – implements IPSFManager standard MPT interface. This is a
standard PSFManager object. MPT Framework and other client applications create a temporary instance
of that object, just for device scanning procedure. After that this instance is released.
This is the first required object. Refer to MPT Developer Reference document for more information about
PSFManager object and IPSFManager interface.

 PSF090632EVMLXDevice object – implements IPSF090632EVMLXDevice specific interface.
However, this interface derives from IMPTDevice standard MPT interface and therefore
PSF090632EVMLXDevice also implements the functionality of MPTDevice standard MPT object. In
addition to standard IMPTDevice methods, IPSF090632EVMLXDevice interface exposes methods,
which are specific to this library. They are described in this document.
This is the second required COM object. Refer to MPT Developer Reference document for more
information about MPTDevice object and IMPTDevice interface.

 PSF090632EVMLXAdvanced object – implements IPSF090632EVMLXAdvanced library specific
interface. This object implements advanced functions that would be rarely used in order to perform
specific operations not available with the standard device functions. In general, most of the methods of
that object provide direct access to MLX90632 EVB firmware commands.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 5 -
Ver.1.9.0

3.2 Objects with Interfaces

PSF090632EV
MLXDevice

IPSF090632EVMLXDevice

ISupportErrorInfo

IMPTDevice

IDispatch

ISpecifyPropertyPages

IPersist

PSF090632EV
MLXManager

ISupportErrorInfo

IDispatch

IPSFManager

PSF090632EV
MLXAdvanced

ISupportErrorInfo

IPSF090632EVMLXAdvanced

IDispatch

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 6 -
Ver.1.9.0

4 PSF090632EVMLXManager Object

4.1 Background
This object is created only once and is destroyed when the library is unmapped from process address space. Each
subsequent request for this object returns the same instance.

PSF090632EVMLXManager object implements standard MPT category
CATID_MLXMPTPSFUSBHIDModule, which is required for automatic device scanning. C++ standalone
client applications can create an instance of this object by using the standard COM API CoCreateInstance with
class ID CLSID_PSF090632EVMLXManager, or ProgID “MPT. PSF090632EVMLXManager”:

hRes = ::CoCreateInstance(CLSID_PSF090632EVMLXManager, NULL, CLSCTX_INPROC,
IID_IPSFManager, (void**) &pPSFMan);

Visual Basic applications should call CreateObject function to instantiate PSF090632EVMLXManager:

Set PSFMan = CreateObject(“MPT. PSF090632EVMLXManager”)

The primary objective of this instantiation is to call ScanStandalone method. C++:

hRes = pPSFMan->ScanStandalone(dtUSBHID, varDevices, &pDevArray);

Or in Visual Basic:

Set DevArray = PSFMan.ScanStandalone(dtUSBHID)

ScanStandalone function returns collection of PSF090632EVMLXDevice objects, one for each connected
MLX90632 EVB. The collection is empty if there are no connected evaluation boards.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 7 -
Ver.1.9.0

5 PSF090632EVMLXDevice Object

5.1 Background
This object implements standard MPT category CATID_MLXMPTPSFUSBHIDDevice as well as library
specific CATID_MLXMPT90632EVBDevice category. It also declares required specific category
CATID_MLXMPT90632EVBUIModule for identification of required user interface modules.

This object can be created directly with CoCreateInstance/CreateObject or by calling the device scanning
procedure ScanStandalone of PSF090632EVMLXManager object. The following Visual Basic subroutine shows
how to instantiate PSF090632EVMLXDevice object by performing device scan on the system:

Sub CreateDevice()
 Dim PSFMan As PSF090632EVMLXManager, DevicesCol As ObjectCollection, I As Long
 On Error GoTo lError

 Set PSFMan = CreateObject("MPT.PSF090632EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID
 If DevicesCol.Count <= 0 Then
 MsgBox ("No EVB90632 devices were found!")
 Exit Sub
 End If

 ' Dev is a global variable of type PSF090632EVMLXDevice
 ‘ Select first device from the collection
 Set Dev = DevicesCol(0)
 MsgBox (Dev.Name & " device found on " & Dev.Channel.Name)
 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 ' We are responsible to call Destroy(True) on the device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

Developers can also manually connect the device object to a USB HID channel object thus bypassing standard
device scanning procedure. The following Visual Basic subroutine allows manual connection along with
standard device scanning depending on input parameter bAutomatic:

Sub CreateDevice(bAutomatic As Boolean)
 Dim PSFMan As PSF090632EVMLXManager, DevicesCol As ObjectCollection, I As Long
 Dim CommMan As CommManager, Chan As MPTChannel
 On Error GoTo lError

 If bAutomatic Then
 ' Automatic device scanning begins here
 Set PSFMan = CreateObject("MPT.PSF090632EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID)
 If DevicesCol.Count <= 0 Then
 MsgBox ("No EVB90632 devices were found!")
 Exit Sub
 End If

 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 'We are responsible to call Destroy(True) on device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Set MyDev = DevicesCol(0)
 Else

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 8 -
Ver.1.9.0

 ' Manual connection begins here
 Set CommMan = CreateObject("MPT.CommManager")
 Set MyDev = CreateObject("MPT.PSF090632EVMLXDevice")
 I = ActiveWorkbook.Names("USB HID Port").RefersToRange.Value2
 Set Chan = CommMan.Channels.CreateChannel(CVar(I), ctUSBHID)
 MyDev.Channel = Chan
 ' Check if an EVB is connected to this channel
 Call MyDev.CheckSetup(False)
 End If
 MsgBox (MyDev.Name & " device found on " & MyDev.Channel.Name)
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

PSF090632EVMLXDevice object implements IMPTDevice standard MPT interface. Please refer to MPT
Developer reference document for description of the properties and methods of this interface.

In addition PSF090632EVMLXDevice object implements IPSF090632EVMLXDevice library specific interface,
which derives from IMPTDevice. The following is a description of its properties and methods.

5.2 Scope of the PSF090632EVMLXDevice object
This object supports all needs for a standard user.
With these basic functions, you’re able to discover this Melexis Product.

5.3 Advanced Property

5.3.1 Description

This is a read-only property which returns a reference to PSF090632EVMLXAdvanced co-object.

5.3.2 Syntax

Visual Basic:

Property Advanced as PSF090632EVMLXAdvanced
Read only

C++:

HRESULT get_Advanced(/*[out][retval]*/ IPSF090632EVMLXAdvanced* pVal);

5.3.3 Parameters

pVal
Address of IPSF090632EVMLXAdvanced* pointer variable that receives the interface pointer to the
Advanced object. If the invocation succeeds, the caller is responsible for calling IUnknown::Release()
on the pointer when it is no longer needed.

5.3.4 Return value

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 9 -
Ver.1.9.0

Visual Basic:
A reference to the Advanced co-object.

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid pointer.
Any other error code The operation failed. *pVal contains NULL.

5.4 ChipVersion Property

5.4.1 Description

This property specifies which the version of the device is connected to the board. Its value can be one of the
constants defined in the ChipVersionCodes enumeration.

5.4.2 Syntax

Visual Basic:

Property ChipVersion as ChipVersionCodes

C++:
HRESULT get_ChipVersion(/*[out][retval]*/ ChipVersionCodes* pVal);
HRESULT set_ChipVersion(/*[in] */ ChipVersionCodes Val);

5.4.3 Parameters

pVal
Address of ChipVersionCodes variable that receives the currently selected device version.

Val
A ChipVersionCodes constant, specifying the required device version.

5.4.4 Return value

Visual Basic:

A ChipVersionCodes value corresponding to the currently selected device version.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 10 -
Ver.1.9.0

5.5 EVBGeneral Property

5.5.1 Description

This property holds a reference to GenericPSFDevice co-object.

5.5.2 Syntax

Visual Basic:

Property EVBGeneral as Object

C++:
HRESULT get_EVBGeneral(/*[out][retval]*/ LPDISPATCH* pVal);
HRESULT set_EVBGeneral(/*[in]*/ LPDISPATCH Value);

5.5.3 Parameters

Value
An IDispatch* specifying new EVBGeneral object. Nothing happens if the object is the same instance as
the existing one. Otherwise PSF090632EVMLXDevice object releases its current EVBGeneral object and
connects to the new one. This also includes replacing of the communication Channel object with the one
from the new GenericPSFDevice object.

pVal
Address of IDispatch* pointer variable that receives the interface pointer to the EVBGeneral device
object. If the invocation succeeds, the caller is responsible for calling IUnknown::Release() on the
pointer when it is no longer needed.

5.5.4 Return value

Visual Basic:

A reference to the GenericPSFDevice co-object.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains valid pointer.
Any other error code The operation failed. *pVal contains NULL.

5.6 Emissivity Property

5.6.1 Description

This property specifies the emissivity parameter, used during temperature calculation.
The default value is 1.00.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 11 -
Ver.1.9.0

5.6.2 Syntax

Visual Basic:

Property Emissivity as Single

C++:
HRESULT get_ Emissivity(/*[out][retval]*/ float* pVal);
HRESULT set_ Emissivity(/*[in] */float Val);

5.6.3 Parameters

pVal
Address of float variable that receives the current value of the emissivity.

Val
A Single value, specifying the new emissivity parameter.

5.6.4 Return value

Visual Basic:

A Single value of the current emissivity.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed.

5.7 MeasurementRange Property

5.7.1 Description

This property specifies which range to be used during temperature measurements.
The default value is mrtDefault (0).
Note, that some ICs only support the default measurement range. Trying to enable different range on such would
return an error.

5.7.2 Syntax

Visual Basic:

Property MeasurementRange as MeasurementRangeType

C++:
HRESULT get_MeasurementRange (/*[out][retval]*/ MeasurementRangeType * pVal);
HRESULT set_MeasurementRange (/*[in] */ MeasurementRangeType Val);

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 12 -
Ver.1.9.0

5.7.3 Parameters

pVal
Address of MeasurementRangeType variable that receives the current value of the property.

Val
A MeasurementRangeType value, specifying the new measurement range.

5.7.4 Return value

Visual Basic:

A MeasurementRangeType value of the current emissivity.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed.

5.8 ReadFullEeprom Method

5.8.1 Description

Reads the whole EEPROM of the device. Updates the internal EEPROM cache with values taken from the
module.

5.8.2 Syntax

Visual Basic:

Sub ReadFullEeprom()

C++:
HRESULT ReadFullEeprom();

5.8.3 Parameters

None

5.8.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 13 -
Ver.1.9.0

5.9 ProgramEeprom Method

5.9.1 Description

Programs the EEPROM of the device. Takes the values from the internal EEPROM cache.
Only the variables that are modified will be programmed.
Note that this method be called only if Advanced.EepromWritable property is True. Otherwise it will
immediately return an error.

5.9.2 Syntax

Visual Basic:

Sub ProgramEeprom()

C++:
HRESULT ProgramEeprom();

5.9.3 Parameters

None

5.9.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.10 DeviceReplaced Method

5.10.1 Description

Informs the object that the sensor is replaced and the EEPROM cache and some internal variables should be
invalidated.

5.10.2 Syntax

Visual Basic:

Sub DeviceReplaced()

C++:
HRESULT DeviceReplaced();

5.10.3 Parameters

None

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 14 -
Ver.1.9.0

5.10.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.11 GetEEParameterCode Method

5.11.1 Description

Returns the code of a particular EEPROM parameter as it is represented in EEPROM. It is optimized because it
uses the EEPROM cache maintained by the library. ReadFullEeprom method could be called before calling
GetEEParameterCode to update the whole cache. However GetEEParameterCode works correctly even if
ReadFullDevice is not called.

5.11.2 Syntax

Visual Basic:

Function GetEEParameterCode(paramID as ParameterCodesEEPROM) as Long

C++:
HRESULT GetEEParameterCode(/*[in]*/ ParameterCodesEEPROM paramID, /*[out,retval]*/

long* pVal);

5.11.3 Parameters

paramID
A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal
An address of Long variable that will receive the return value of the method.

5.11.4 Return value

Visual Basic:

A Long containing the code of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal is 0.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 15 -
Ver.1.9.0

5.12 SetEEParameterCode Method

5.12.1 Description

Changes the code of a particular EEPROM parameter. The method works with the EEPROM cache maintained
by the library.
ProgramEeprom method must be called in order to update the EEPROM of the module with the codes from the
cache.

5.12.2 Syntax

Visual Basic:

Sub SetEEParameterCode(paramID as ParameterCodesEEPROM, Value as Long)

C++:
HRESULT SetEEParameterCode(/*[in]*/ ParameterCodesEEPROM paramID,

/*[in]*/ long Value);

5.12.3 Parameters

paramID
A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Value
A Long containing new code for the parameter.

5.12.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.13 GetEEParameterValue Method

5.13.1 Description

Returns the translated value of a particular EEPROM parameter. It first calls GetEEParameterCode method
and then translates the code of the parameter into a suitable value.
Translation is not defined for all parameters and this method returns an error if it receives paramID which is not
supported.
Note, that currently no parameter has defined translation.

5.13.2 Syntax

Visual Basic:

Function GetEEParameterValue(paramID as ParameterCodesEEPROM)

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 16 -
Ver.1.9.0

C++:

HRESULT GetEEParameterValue(/*[in]*/ ParameterCodesEEPROM paramID,
/*[out,retval]*/ TVariant* pVal);

5.13.3 Parameters

paramID
A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

5.13.4 Return value

Visual Basic:

A Variant containing the translated value of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal is Empty.

5.14 SetEEParameterValue Method

5.14.1 Description

Changes the value of a particular EEPROM parameter. It first translates the value to a corresponding code and
then calls SetEEParameterCode method to modify the parameter in the cache.
Translation is not defined for all parameters and this method returns an error if it receives paramID which is not
supported.
ProgramEeprom method must be called in order to update the EEPROM of the module with the codes from the
cache.
Note, that currently no parameter has defined translation.

5.14.2 Syntax

Visual Basic:

Sub SetEEParameter(paramID as ParameterCodesEEPROM, Value)

C++:
HRESULT SetEEParameter(/*[in]*/ ParameterCodesEEPROM paramID, /*[in]*/

TVariantInParam Value);

5.14.3 Parameters

paramID

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 17 -
Ver.1.9.0

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Value
A VARIANT containing new value for the parameter.

5.14.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.15 GetEEData Method

5.15.1 Description

This method returns the full contents (512 bytes) of EEPROM from the internal cache on the PC. In order to
perform a real reading from the device, ReadFullEeprom method must be called first.

5.15.2 Syntax

Visual Basic:

Function GetEEData([Format As Long = 1]) as Variant

C++:
HRESULT GetEEData(/*[in,defaultvalue=1]*/ long Format

/*[out,retval]*/ VARIANT* ReadData);

5.15.3 Parameters

Format
A long specifying the format of the returned data. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

ReadData
An address of Variant variable that will receive the read data. The type of content is specified by Format
parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

5.15.4 Return value

Visual Basic:

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 18 -
Ver.1.9.0

A Variant, containing the read data. The type of content is specified by Format parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.16 SetEEData Method

5.16.1 Description

This method sets the full contents (512 bytes) of EEPROM to the internal cache on the PC. In order to perform a
real programming to the device, ProgramEeprom method must be called afterwards.

5.16.2 Syntax

Visual Basic:

Sub SetEEData(Data as Variant, [Format As Long = 1])

C++:
HRESULT SetEEData(/*[in]*/ VARIANT Data, /*[in,defaultvalue=1]*/ long Format);

5.16.3 Parameters

Data
A Variant containing 512 bytes which will be set in the cache. The type of content is specified by Format
parameter.

Format
A long specifying the format of the provided data. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

5.16.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 19 -
Ver.1.9.0

5.17 SetVdd Method

5.17.1 Description

Sets supply voltage.

5.17.2 Syntax

Visual Basic:

Sub SetVdd(Volt As Single)

C++:
HRESULT SetVdd(/*[in]*/ float Volt);

5.17.3 Parameters

Volt
A Single (float) specifying supply voltage. Valid values are between 0 and 5V.

5.17.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.18 MeasureSupply Method

5.18.1 Description

This method will measure the supply voltage and current of the device.

5.18.2 Syntax

Visual Basic:

Function MeasureSupply(Byref Idd as Single) as Single

C++:
HRESULT MeasureSupply(/*[out]*/float* Idd, /*[out, retval]*/ float* Vdd);

5.18.3 Parameters

Idd
An address of float variable that will receive the measured supply current in (μA).

Vdd
An address of float variable that will receive the measured supply voltage in (V).

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 20 -
Ver.1.9.0

5.18.4 Return value

Visual Basic:

A Single containing the measured supply voltage.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.19 ContactTest Method

5.19.1 Description

This method checks if the device is properly connected. A valid I2C read command will be sent and checked for
acknowledge. Then the same command will be sent to an invalid address and the result must be NAK.

5.19.2 Syntax

Visual Basic:

Function ContactTest() as Boolean

C++:
HRESULT ContactTest(/*[out, retval]*/ VARIANT_BOOL* pVal);

5.19.3 Parameters

pVal
An address of VARIANT_BOOL variable that will receive the result of the contact test.

5.19.4 Return value

Visual Basic:

A Boolean containing the result of the contact test.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.20 ReadMem Method

5.20.1 Description

This method reads a specified sequence of addresses from IC.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 21 -
Ver.1.9.0

5.20.2 Syntax

Visual Basic:

Function ReadMem(Addr As Long, NWords As Long, [Format As Long = 1]) as Variant

C++:
HRESULT ReadMem(/*[in]*/ long Addr, /*[in]*/ long NWords,

/*[in]*/ long Format, /*[out,retval]*/ VARIANT* ReadData);

5.20.3 Parameters

Addr
A Long specifying the first RAM address to be read.

NWords
A Long specifying the number of words to be read.

Format
A long specifying the format of the read data. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

ReadData
An address of Variant variable that will receive the read data. The type of content is specified by Format
parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

5.20.4 Return value

Visual Basic:

A Variant, containing the read data. The type of content is specified by Format parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.21 WriteMem Method

5.21.1 Description

Writes to an address of IC.

5.21.2 Syntax

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 22 -
Ver.1.9.0

Visual Basic:
Sub WriteMem(Addr as Long, Data As Long)

C++:

HRESULT WriteMem(/*[in]*/ long Addr, /*[in]*/ long Data);

5.21.3 Parameters

Addr
A Long specifying the address to be written.

Data
A Long specifying the data to be written.

5.21.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.22 ReadSingleFrame Method

5.22.1 Description

This method reads object and PTAT temperatures from IC.

5.22.2 Syntax

Visual Basic:

Function ReadSingleFrame(Processing As DataProcessingTypes, ByRef PTAT As Long,
ByRef IR2 As Long) as Long

C++:

HRESULT ReadSingleFrame(/*[in]*/ DataProcessingTypes Processing, /*[out]*/ long* PTAT,
/*[out]*/ long* IR2, /*[out,retval]*/ long* IRData);

5.22.3 Parameters

Processing
A DataProcessingTypes constant, specifying whether raw or compensated data will be returned.

PTAT
An address of Long variable that will receive the value of PTAT register.

IR2
An address of Long variable that will receive the value of the second IR object temperature register.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 23 -
Ver.1.9.0

IRData
An address of Long variable that will receive the value of IR object temperature register.

5.22.4 Return value

Visual Basic:

A Long, containing the value of IR object temperature register.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.23 ReadSingleFrameEx Method

5.23.1 Description

This method reads object and PTAT temperatures from IC. Additionally it provides the raw data used during
calculations.

5.23.2 Syntax

Visual Basic:

Function ReadSingleFrameEx(Processing As DataProcessingTypes,
Format As Long, ByRef RawData as Variant,
ByRef PTAT As Long, ByRef IR2 As Long) as Long

C++:

HRESULT ReadSingleFrame(/*[in]*/ DataProcessingTypes Processing,
/*[in]*/long Format, /*[out]*/ VARIANT* RawData, /*[out]*/long* PTAT,
/*[out]*/ long* IR2, /*[out,retval]*/ long* IRData);

5.23.3 Parameters

Processing
A DataProcessingTypes constant, specifying whether raw or compensated data will be returned.

Format
A long specifying the format of the returned raw data. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

RawData

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 24 -
Ver.1.9.0

An address of Variant variable that will receive the raw data. The type of content is specified by Format
parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

PTAT
An address of Long variable that will receive the value of PTAT register.

IR2
An address of Long variable that will receive the value of the second IR object temperature register.

IRData
An address of Long variable that will receive the value of IR object temperature register.

5.23.4 Return value

Visual Basic:

A Long, containing the value of IR object temperature register.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.24 CmdReset Method

5.24.1 Description

This method sends a RESET command to the device.

5.24.2 Syntax

Visual Basic:

Sub CmdReset()

C++:
HRESULT CmdReset();

5.24.3 Parameters

None

5.24.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 25 -
Ver.1.9.0

5.25 ReadChipVersion Method

5.25.1 Description

This method is used to determine the type of the connected device.

5.25.2 Syntax

Visual Basic:

Function ReadChipVersion() as ChipVersionCodes

C++:
HRESULT ReadChipVersion(/*[out,retval]*/ ChipVersionCodes* pValue);

5.25.3 Parameters

pValue
An address of ChipVersionCodes variable that will receive an enumeration code, corresponding to the
type of the connected device. If there is no connected device or communication with such cannot be
established, the returned code is ChipVersionUndefined.

5.25.4 Return value

Visual Basic:

A ChipVersionCodes code, corresponding to the type of the connected device. If there is no
connected device or communication with such cannot be established, the returned code is
ChipVersionUndefined.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 26 -
Ver.1.9.0

6 PSF090632EVMLXAdvanced Object

6.1 Background
This object cannot be created directly; it is only accessible as “Advanced” property of
PSF090632EVMLXDevice object.

PSF090632EVMLXAdvanced object implements IPSF090632EVMLXAdvanced library specific interface. The
following is a description of its methods.

6.2 Scope of the PSF090632EVMLXAdvanced object
This object implements advanced functions that would be rarely used in order to perform specific operations not
available with the standard device functions. In general, most of the methods of that object provide direct access
to MLX90632 EVB firmware commands.

6.3 Logging Property

6.3.1 Description

Specifies whether logging information is generated while working with the library, mostly for the solving
process.

6.3.2 Syntax

Visual Basic:

Property Logging as Boolean

C++:
HRESULT get_Logging(/*[out,retval]*/ VARIANT_BOOL* pValue);
HRESULT set_Logging(/*[in]*/ VARIANT_BOOL Value);

6.3.3 Parameters

pValue
An address of VARIANT_BOOL variable that receives current value of the property.
VARIANT_TRUE means that logging is active, VARIANT_FALSE means inactive.

Value
A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE activates the logging,
VARIANT_FALSE deactivates it.

6.3.4 Return value

Visual Basic:

True if logging is active, False otherwise.

C++:

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 27 -
Ver.1.9.0

 The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.
Any other error code The operation failed.

6.4 QuietCheck Property

6.4.1 Description

Specifies whether connection and configuration check, performed in front of each high level method, can show
warning and confirmation messages or will directly return an error message.

6.4.2 Syntax

Visual Basic:

Property QuietCheck as Boolean

C++:
HRESULT get_QuietCheck(/*[out,retval]*/ VARIANT_BOOL* pValue);
HRESULT set_QuietCheck(/*[in]*/ VARIANT_BOOL Value);

6.4.3 Parameters

pValue
An address of VARIANT_BOOL variable that receives current value of the property.
VARIANT_TRUE means that checks are “quiet”, VARIANT_FALSE means that warnings can be
shown.

Value
A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE suppress dialogs,
VARIANT_FALSE allows them.

6.4.4 Return value

Visual Basic:

True if checks are “quiet”, False if warnings can be shown.

C++:
 The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.
Any other error code The operation failed.

6.5 EepromWritable Property

6.5.1 Description

This property specifies whether EEPROM of the device can be written. By default its value is False, meaning
EEPROM cannot be written.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 28 -
Ver.1.9.0

6.5.2 Syntax

Visual Basic:

Property EepromWritable as Boolean

C++:
HRESULT get_ EepromWritable(/*[out,retval]*/ VARIANT_BOOL* pValue);
HRESULT set_ EepromWritable(/*[in]*/ VARIANT_BOOL Value);

6.5.3 Parameters

pValue
An address of VARIANT_BOOL variable that receives current value of the property.
VARIANT_TRUE means that calls to ProgramEeprom method will write to the device,
VARIANT_FALSE means that such calls will return an error.

Value
A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE enables writing,
VARIANT_FALSE disables it.

6.5.4 Return value

Visual Basic:

True if ProgramEeprom method will write to the device, False if it will return an error.

C++:
 The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.
Any other error code The operation failed.

6.6 GetSetting Method

6.6.1 Description

Returns the value of a particular setting.

6.6.2 Syntax

Visual Basic:

Function GetSetting(settingID as SettingCodes)

C++:
HRESULT GetSetting(/*[in]*/ SettingCodes settingID, /*[out,retval]*/ TVariant* pVal);

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 29 -
Ver.1.9.0

6.6.3 Parameters

settingID
A SettingCodes constant specifying the ID of the setting.

pVal
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

6.6.4 Return value

Visual Basic:

A Variant containing the value of a setting.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains valid value.
Any other error code The operation failed. *pVal is Empty.

6.7 SetSetting Method

6.7.1 Description

Changes the value of a particular setting. Sets an associated internal variable. The setting is also sent
immediately to MLX90632 evaluation board.

NOTE: If necessary, the changes can be saved in the profile with a subsequent call to SaveProfile or
SaveProfileAs methods.

6.7.2 Syntax

Visual Basic:

Sub SetSetting(settingID as SettingCodes, Value)

C++:
HRESULT SetSetting(/*[in]*/ SettingCodes settingID, /*[in]*/ TVariantInParam Value);

6.7.3 Parameters

settingID
A SettingCodes constant specifying the ID of the setting to modify.

Value
A VARIANT containing new value for the setting.

6.7.4 Return value

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 30 -
Ver.1.9.0

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

6.8 OpenProfile Method

6.8.1 Description

Opens the specified file and updates the settings.

6.8.2 Syntax

Visual Basic:

Sub OpenProfile(FileName as String)

C++:
HRESULT OpenProfile(/*[in]*/ BSTR FileName);

6.8.3 Parameters

FileName
A String specifying the path of the file to open.

6.8.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

6.9 SaveProfile Method

6.9.1 Description

Saves the settings into a previously opened profile. This function fails if there is not a profile in use.

6.9.2 Syntax

Visual Basic:

Sub SaveProfile()

C++:
HRESULT SaveProfile();

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 31 -
Ver.1.9.0

6.9.3 Parameters

None

6.9.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

6.10 SaveProfileAs Method

6.10.1 Description

Saves the settings into the specified file.

6.10.2 Syntax

Visual Basic:

Sub SaveProfileAs(FileName as String)

C++:
HRESULT SaveProfileAs(/*[in]*/ BSTR FileName);

6.10.3 Parameters

FileName
A String specifying the path of the file.

6.10.4 Return value

C++:

The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

6.11 I2CWriteRead Method

6.11.1 Description

This method is for general I2C master-to-slave communication. It could be used for write or read transmissions,
and also for write then read. Start and Stop conditions are generated respectively at the beginning and the end of
the transmission. A Repeated Start Condition is inserted between Write-then-Read requests.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 32 -
Ver.1.9.0

6.11.2 Syntax

Visual Basic:

Function I2CWriteRead(DevAddr As Byte, WriteData as Variant, Format As Long,
NReadBytes As Long, err As Byte) as Variant

C++:

HRESULT I2CWriteRead(/*[in]*/ unsigned char DevAddr, /*[in]*/ VARIANT WriteData,
/*[in]*/ long Format, /*[in]*/ long NReadBytes, /*[out]*/ unsigned char* err,
/*[out,retval]*/ VARIANT* ReadData);

6.11.3 Parameters

DevAddr
A Byte specifying the address of the slave device.

WriteData
A Variant specifying the data to be send by the master. The content of the variant depends on the Format
parameter.

Format
A long specifying the format of data in WriteData and ReadData. Possible values are:
Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.
2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the
string can contain zeroes and may not be zero terminated. Callers can get its real length
by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

NReadBytes
A Long specifying the number of bytes to read after (eventual) writing.

err
An address of Byte variable that will receive an error code (0=no error, 1=I2C NAK).

ReadData
An address of Variant variable that will receive the read data. The type of content is specified by Format
parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

6.11.4 Return value

Visual Basic:

A Variant, containing the read data. The type of content is specified by Format parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 33 -
Ver.1.9.0

7 Enumeration constants

7.1 ParameterCodesEEPROM enumeration
The following constants refer to parameters in EEPROM. They are used by GetEEParameterCode,
SetEEParameterCode, GetEEParameterValue and SetEEParameterValue methods.
Parameters with translation value ‘-‘ are not supported by GetEEParameterValue and
SetEEParameterValue methods.

Constant
V

a
lu

e

B
it

s

Translation value Description

CodeCONTROL 1 16 -

CodeI2C_ADDRESS 2 16 -

CodeWAIT_TIME0 3 16 -

CodeWAIT_TIME1 4 16 -

CodeWAIT_TIME2 5 16 -

CodeWAIT_TIME3 6 16 -

CodeRES_CTRL_CH1_0 7 16 -

CodeRES_CTRL_CH1_1 8 16 -

CodeRES_CTRL_CH2_0 9 16 -

CodeRES_CTRL_CH2_1 10 16 -

CodeRES_CTRL_CH3_0 11 16 -

CodeRES_CTRL_CH3_1 12 16 -

CodeMEAS0 13 16 -

CodeMEAS1 14 16 -

CodeMEAS2 15 16 -

CodeMEAS3 16 16 -

CodeMEAS4 17 16 -

CodeMEAS5 18 16 -

CodeMEAS6 19 16 -

CodeMEAS7 20 16 -

CodeMEAS8 21 16 -

CodeMEAS9 22 16 -

CodeMEAS10 23 16 -

CodeMEAS11 24 16 -

CodeMEAS12 25 16 -

CodeMEAS13 26 16 -

CodeMEAS14 27 16 -

CodeMEAS15 28 16 -

CodeMEAS16 29 16 -

CodeMEAS17 30 16 -

CodeMEAS18 31 16 -

CodeMEAS19 32 16 -

CodeMEAS20 33 16 -

CodeMEAS21 34 16 -

CodeMEAS22 35 16 -

CodeMEAS23 36 16 -

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 34 -
Ver.1.9.0

Constant

V
a

lu
e

B
it

s

Translation value Description

CodeMEAS24 37 16 -

CodeMEAS25 38 16 -

CodeMEAS26 39 16 -

CodeMEAS27 40 16 -

CodeMEAS28 41 16 -

CodeMEAS29 42 16 -

CodeMEAS30 43 16 -

CodeMEAS31 44 16 -

CodeCUST_CRC16 45 16 -

CodeAlpha_appli 46 16 -

CodeTO_Offset_appli 47 16 -

CodeTRIM0 501 16 - R/O

CodeTRIM1 502 16 - R/O

CodeTRIM2 503 16 - R/O

CodeTRIM3 504 16 - R/O

CodeI2C_CONFIG 505 16 - R/O

CodeID0 506 16 - R/O

CodeID1 507 16 - R/O

CodeID2 508 16 - R/O

CodeIDCRC 509 16 - R/O

CodeMLX_CRC16 510 16 - R/O

CodeVERSIONS 511 16 - R/O

CodeDSP_VERSION 512 8 - R/O

CodeTRIM_VERSION 513 8 - R/O

CodePTAT_REF 514 32 - R/O

CodePTAT_GAIN 515 32 - R/O

CodePTAT_TC2 516 32 - R/O

CodePTAT_OFFSET 517 32 - R/O

CodeAa 518 32 - R/O

CodeAb 519 32 - R/O

CodeBa 520 32 - R/O

CodeBb 521 32 - R/O

CodeCa 522 32 - R/O

CodeCb 523 32 - R/O

CodeDa 524 32 - R/O

CodeDb 525 32 - R/O

CodeK_TA 526 32 - R/O

CodeTA0 527 32 - R/O

CodeAlpha 528 32 - R/O

CodeKsTA 529 32 - R/O

CodeKsTO 530 32 - R/O

CodeBeta_TA 531 16 - R/O

CodeBeta_IR 532 16 - R/O

CodeVDDMON_OFFSET 533 16 - R/O

CodePRODUCT_CODE 534 16 - R/O

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 35 -
Ver.1.9.0

Constant

V
a

lu
e

B
it

s

Translation value Description

CodeACCURACY_RANGE 535 5 - R/O

CodePACKAGE 536 3 - R/O

CodeFDV 537 2 - R/O

7.2 SettingCodes enumeration
The following constants specify different settings. They are used by GetSetting and SetSetting methods.

Constant

V
a

lu
e

Type
Default
value

Description

SettingTpor 1 (Long) long 10000 [µs] Power On Reset delay

SettingTreset 2 1000 [µs] Delay to keep Vdd off for resetting

SettingTclock 3 (Single) float 1.0 [µs] I2C clock speed

SettingTstart 4 (Single) float 1.0 [µs] I2C Start condition delay

SettingTstop 5 (Single) float 1.0 [µs] I2C Stop condition delay

SettingTwrdelay 6 (Single) float 1.0 [µs] Delay between the write and read
I2C commands

SettingI2CaddrIR 7 (Byte)
unsigned char

58 The address of IR device

SettingTEEwrite 8 (Long) long 6000 [µs] Delay for writing to an EEPROM
address

SettingTholdData 9 (Single) float 0.05 [µs] I2C delay between SCL and SDA
edges

7.3 ChipVersionCodes enumeration
The following constants specify different versions of the device. They are used by ChipVersion property.

Constant

V
a

lu
e

Description

ChipVersionUndefined 0

ChipVersion90632AAA 1

7.4 DataProcessingTypes enumeration
The following constants specify different types of data processing. They are used by ReadSingleFrame
method.

Constant

V
a

lu
e

Description

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 36 -
Ver.1.9.0

Constant

V
a

lu
e

Description

dptRawData 0 Received data will be the same as read from IC

dptAbsoluteToFromPC 2 Received data will be absolute To. Conversion will
be made on PC.

7.5 MeasurementRangeTypes enumeration
The following constants specify different types of measurement range. They are used by
MeasurementRange property.

Constant

V
a

lu
e

Description

mrtDefault 0 Use the default measurement range of the connected IC

mrtExtended 1 Use extended measurement range of the connected IC (Optional)

EVB - PSF - MLX90632
Product Specific Function description

MLX90632 PSF Library Object Model 2020-05-29 - 37 -
Ver.1.9.0

8 History records

Version Date Comments

1.9.0 Mar 31, 2020 Added new property MeasurementRange

1.8.3 Aug 2, 2019 Added PRODUCT_CODE, ACCURACY_RANGE, PACKAGE and FDV
parameters

1.7.0 Feb 7, 2019 Added new method ReadSingleFrameEx

1.6.0 May 15, 2018 Added Emissivity (default 1.0) property

1.5.0 May 16, 2017 Initial release

9 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2004 Melexis NV. All rights reserved.

website at:

www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: All other locations:

Phone: +32 13 67 04 95 Phone: +1 603 223 2362
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified

