
EVB - PSF - MLX90614
Product Specific Function description

MLX90614 PRODUCT
SPECIFIC FUNCTIONS

Software Library

MLX90614 PSF Library Object Model 04-11-10 - 1 -

EVB - PSF - MLX90614
Product Specific Function description

1 Contents
1 CONTENTS ... 2

2 INTRODUCTION ... 4

3 SOFTWARE STRUCTURE ... 4

3.1 Object Model .. 4
3.2 Objects with Interfaces ... 4

4 PSF090614EVMLXMANAGER OBJECT ... 5

4.1 Background ... 5

5 PSF090614EVMLXDEVICE OBJECT ... 6

5.1 Background ... 6
5.2 Scope of the PSF090614EVMLXDevice object .. 7
5.3 ReadFullDevice Method ... 7
5.4 ProgramDevice Method .. 8
5.5 DeviceReplaced Method ... 8
5.6 GetEEParameterCode Method ... 9
5.7 SetEEParameterCode Method .. 10
5.8 GetEEParameterValue Method .. 10
5.9 SetEEParameterValue Method ... 11
5.10 CmdCheckModuleVersion Method .. 12
5.11 CmdSendRequest Method .. 13
5.12 CmdReportAddresses Method .. 13
5.13 CheckPosition Method ... 14
5.14 SetSMBAddress Method .. 15
5.15 CmdSetSMBSpeed Method .. 15
5.16 CmdSetSupplyVoltage Method .. 16
5.17 CmdRestartModule Method ... 17
5.18 CmdSetSleepMode Method .. 17
5.19 SetApplicationMode Method ... 18
5.20 SetCalibrationMode Method .. 18
5.21 CmdReadRam Method ... 19
5.22 CmdWriteRam Method .. 20
5.23 CmdReadEeprom Method .. 20
5.24 CmdWriteEeprom Method ... 21
5.25 CmdEraseEeprom Method ... 22
5.26 CmdCapturePWM Method ... 22
5.27 CapturePWM Method ... 23
5.28 ResetHardware Method .. 24
5.29 GetMainHardwareID Method ... 24
5.30 GetSoftwareID Method .. 25
5.31 SendCommand Method .. 26
5.32 EnterBootLoader Method ... 27
5.33 ExitBootLoader Method ... 28
5.34 BLUploadIntelHexFile Method .. 28
5.35 BLSendIntelHexLine Method .. 29
5.36 BLVerifyIntelHexFile Method ... 30
5.37 BLVerifyIntelHexLine Method .. 31
5.38 ResponseTimeout Property ... 31
5.39 CommunicationLog Property ... 32

6 ENUMERATION CONSTANTS ... 34

MLX90614 PSF Library Object Model 04-11-10 - 2 -

EVB - PSF - MLX90614
Product Specific Function description

6.1 ParamCodesEEPROM enumeration ... 34

7 DISCLAIMER ... 35

MLX90614 PSF Library Object Model 04-11-10 - 3 -

EVB - PSF - MLX90614
Product Specific Function description

2 Introduction
MLX90614 PSF is MS Windows software library, which meets the requirements for a Product Specific
Functions (PSF) module, defined in Melexis Programmable Toolbox (MPT) object model. The library
implements in-process COM objects for interaction with MLX90614 EVB firmware. It is designed primarily to
be used by MPT Framework application, but also can be loaded as a standalone in-process COM server by other
applications that need to communicate with the above-mentioned Melexis hardware.

The library can be utilized in all programming languages, which support ActiveX automation. This gives great
flexibility in designing the application with the only limitation to be run on MS Windows OS. In many scripting
languages, objects can be directly created and used. In others, though, the first step during implementation is to
include the library in your project. The way it can be done depends on the programming language and the
specific Integrated Development Environment (IDE) used:

• in C++ it can be imported by #import directive

• in Visual Basic it either can be directly used as pure Object or added as a reference to the project

• in C# it has to be added as a reference to the project

• in NI LabView, for each Automation refnum the corresponding ActiveX class has to be selected

• in NI LabWindows an ActiveX Controller has to be created

3 Software Structure

3.1 Object Model
MPT object model specifies that a PSF module must expose two COM objects which implement certain COM
interfaces. MLX90614 PSF implements these two objects and two additional objects for advanced operations.

• PSF090614EVMLXManager object – implements IPSFManager standard MPT interface. This is a
standard PSFManager object. MPT Framework and other client applications create a temporary instance
of that object, just for device scanning procedure. After that this instance is released.
This is the first required object. Refer to MPT Developer Reference document for more information about
PSFManager object and IPSFManager interface.

• PSF090614EVMLXDevice object – implements IPSF090614EVMLXDevice specific interface.
However, this interface derives from IMPTDevice standard MPT interface and therefore
PSF090614EVMLXDevice also implements the functionality of MPTDevice standard MPT object. In
addition to standard IMPTDevice methods, IPSF090614EVMLXDevice interface exposes methods,
which are specific to this library. They are described in this document.
This is the second required COM object. Refer to MPT Developer Reference document for more
information about MPTDevice object and IMPTDevice interface.

3.2 Objects with Interfaces

MLX90614 PSF Library Object Model 04-11-10 - 4 -

PSF090614EV
MLXDevice

IPSF090614EVMLXDevice

ISupportErrorInfo

IMPTDevice

IDispatch

ISpecifyPropertyPages

IPersist

PSF090614EV
MLXManager ISupportErrorInfo

IDispatch

IPSFManager

EVB - PSF - MLX90614
Product Specific Function description

4 PSF090614EVMLXManager Object

4.1 Background
This object is created only once and is destroyed when the library is unmapped from process address space. Each
subsequent request for this object returns the same instance.

PSF090614EVMLXManager object implements standard MPT category
CATID_MLXMPTPSFUSBHIDModule, which is required for automatic device scanning. C++ standalone
client applications can create an instance of this object by using the standard COM API CoCreateInstance with
class ID CLSID_PSF090614EVMLXManager, or ProgID “MPT. PSF090614EVMLXManager”:

hRes = ::CoCreateInstance(CLSID_PSF090614EVMLXManager, NULL, CLSCTX_INPROC,
IID_IPSFManager, (void**) &pPSFMan);

Visual Basic applications should call CreateObject function to instantiate PSF090614EVMLXManager:

Set PSFMan = CreateObject(“MPT. PSF090614EVMLXManager”)

The primary objective of this instantiation is to call ScanStandalone method. C++:

hRes = pPSFMan->ScanStandalone(dtUSBHID, varDevices, &pDevArray);

Or in Visual Basic:

Set DevArray = PSFMan.ScanStandalone(dtUSBHID)

ScanStandalone function returns collection of PSF090614EVMLXDevice objects, one for each connected
MLX90614 EVB. The collection is empty if there are no connected evaluation boards.

MLX90614 PSF Library Object Model 04-11-10 - 5 -

EVB - PSF - MLX90614
Product Specific Function description

5 PSF090614EVMLXDevice Object

5.1 Background
This object implements standard MPT category CATID_MLXMPTPSFUSBHIDDevice as well as library
specific CATID_MLXMPT90614EVBDevice category. It also declares required specific category
CATID_MLXMPT90614EVBUIModule for identification of required user interface modules.

This object can be created directly with CoCreateInstance/CreateObject or by calling the device scanning
procedure ScanStandalone of PSF090614EVMLXManager object. The following Visual Basic subroutine shows
how to instantiate PSF090614EVMLXDevice object by performing device scan on the system:
Sub CreateDevice()
 Dim PSFMan As PSF090614EVMLXManager, DevicesCol As ObjectCollection, I As Long
 On Error GoTo lError

 Set PSFMan = CreateObject("MPT.PSF090614EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID
 If DevicesCol.Count <= 0 Then
 MsgBox ("No EVB90614 devices were found!")
 Exit Sub
 End If

 ' Dev is a global variable of type PSF090614EVMLXDevice
 ‘ Select first device from the collection
 Set Dev = DevicesCol(0)
 MsgBox (Dev.Name & " device found on " & Dev.Channel.Name)
 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 ' We are responsible to call Destroy(True) on the device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

Developers can also manually connect the device object to a USB HID channel object thus bypassing standard
device scanning procedure. The following Visual Basic subroutine allows manual connection along with
standard device scanning depending on input parameter bAutomatic:
Sub CreateDevice(bAutomatic As Boolean)
 Dim PSFMan As PSF090614EVMLXManager, DevicesCol As ObjectCollection, I As Long
 Dim CommMan As CommManager, Chan As MPTChannel
 On Error GoTo lError

 If bAutomatic Then
 ' Automatic device scanning begins here
 Set PSFMan = CreateObject("MPT.PSF090614EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID)
 If DevicesCol.Count <= 0 Then
 MsgBox ("No EVB90614 devices were found!")
 Exit Sub
 End If

 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1
 'We are responsible to call Destroy(True) on device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I
 End If
 Set MyDev = DevicesCol(0)
 Else

MLX90614 PSF Library Object Model 04-11-10 - 6 -

EVB - PSF - MLX90614
Product Specific Function description

 ' Manual connection begins here
 Set CommMan = CreateObject("MPT.CommManager")
 Set MyDev = CreateObject("MPT.PSF090614EVMLXDevice")
 I = ActiveWorkbook.Names("USB HID Port").RefersToRange.Value2
 Set Chan = CommMan.Channels.CreateChannel(CVar(I), ctUSBHID)
 MyDev.Channel = Chan
 ' Check if an EVB is connected to this channel
 Call MyDev.CheckSetup(False)
 End If
 MsgBox (MyDev.Name & " device found on " & MyDev.Channel.Name)
 Exit Sub

lError:
 MsgBox Err.Description
 Err.Clear
End Sub

PSF090614EVMLXDevice object implements IMPTDevice standard MPT interface. Please refer to MPT
Developer reference document for description of the properties and methods of this interface.

In addition PSF090614EVMLXDevice object implements IPSF090614EVMLXDevice library specific interface,
which derives from IMPTDevice. The following is a description of its properties and methods.

5.2 Scope of the PSF090614EVMLXDevice object
This object supports all needs for a standard user.
With these basic functions, you’re able to discover this Melexis Product.

5.3 ReadFullDevice Method

5.3.1Description
Reads the whole EEPROM of the device. Updates the internal EEPROM cache with values taken from the
module.

5.3.2Syntax

Visual Basic:
Sub ReadFullDevice()

C++:
HRESULT ReadFullDevice();

5.3.3Parameters

None

5.3.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

MLX90614 PSF Library Object Model 04-11-10 - 7 -

EVB - PSF - MLX90614
Product Specific Function description

5.4 ProgramDevice Method

5.4.1Description
Programs the EEPROM of the device. Takes the values from the internal EEPROM cache.
Only the variables that are modified will be programmed.

5.4.2Syntax

Visual Basic:
Sub ProgramDevice()

C++:
HRESULT ProgramDevice();

5.4.3Parameters

None

5.4.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.5 DeviceReplaced Method

5.5.1Description
Informs the object that the sensor is replaced and the EEPROM cache and some internal variables should be
invalidated.

5.5.2Syntax

Visual Basic:
Sub DeviceReplaced()

C++:
HRESULT DeviceReplaced();

5.5.3Parameters

None

MLX90614 PSF Library Object Model 04-11-10 - 8 -

EVB - PSF - MLX90614
Product Specific Function description

5.5.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.6 GetEEParameterCode Method

5.6.1Description
Returns the code of a particular EEPROM parameter as it is represented in EEPROM. It is optimized because it
uses the EEPROM cache maintained by the library. ReadFullDevice method could be called before calling
GetEEParameterCode to update the whole cache. However GetEEParameterCode works correctly even if
ReadFullDevice is not called.

5.6.2Syntax

Visual Basic:
Function GetEEParameterCode(paramID as ParamCodesEEPROM) as Long

C++:
HRESULT GetEEParameterCode(/*[in]*/ ParamCodesEEPROM paramID, /*[out,retval]*/

long* pVal);

5.6.3Parameters

paramID
A ParamCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal
An address of Long variable that will receive the return value of the method.

5.6.4Return value

Visual Basic:
A Long containing the code of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal is 0.

MLX90614 PSF Library Object Model 04-11-10 - 9 -

EVB - PSF - MLX90614
Product Specific Function description

5.7 SetEEParameterCode Method

5.7.1Description
Changes the code of a particular EEPROM parameter. The method works with the EEPROM cache maintained
by the library.
ProgramDevice method must be called in order to update the EEPROM of the module with the codes from the
cache.

5.7.2Syntax

Visual Basic:
Sub SetEEParameterCode(paramID as ParamCodesEEPROM, Value as Long)

C++:
HRESULT SetEEParameterCode(/*[in]*/ ParamCodesEEPROM paramID, /*[in]*/ long

Value);

5.7.3Parameters

paramID
A ParamCodesEEPROM constant specifying the ID of the EEPROM parameter.

Value
A Long containing new code for the parameter.

5.7.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.8 GetEEParameterValue Method

5.8.1Description
Returns the translated value of a particular EEPROM parameter. It first calls GetEEParameterCode method
and then translates the code of the parameter into a suitable value.
Translation is not defined for all parameters and this method returns an error if it receives paramID which is not
supported.

5.8.2Syntax

Visual Basic:
Function GetEEParameterValue(paramID as ParamCodesEEPROM)

MLX90614 PSF Library Object Model 04-11-10 - 10 -

EVB - PSF - MLX90614
Product Specific Function description

C++:
HRESULT GetEEParameterValue(/*[in]*/ ParamCodesEEPROM paramID, /*[out,retval]*/

TVariant* pVal);

5.8.3Parameters

paramID
A ParamCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

5.8.4Return value

Visual Basic:
A Variant containing the translated value of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal is Empty.

5.9 SetEEParameterValue Method

5.9.1Description
Changes the value of a particular EEPROM parameter. It first translates the value to a corresponding code and
then calls SetEEParameterCode method to modify the parameter in the cache.
Translation is not defined for all parameters and this method returns an error if it receives paramID which is not
supported.
ProgramDevice method must be called in order to update the EEPROM of the module with the codes from the
cache.

5.9.2Syntax

Visual Basic:
Sub SetEEParameter(paramID as ParamCodesEEPROM, Value)

C++:
HRESULT SetEEParameter(/*[in]*/ ParamCodesEEPROM paramID, /*[in]*/

TVariantInParam Value);

5.9.3Parameters

paramID
A ParamCodesEEPROM constant specifying the ID of the EEPROM parameter.

MLX90614 PSF Library Object Model 04-11-10 - 11 -

EVB - PSF - MLX90614
Product Specific Function description

Value
A VARIANT containing new value for the parameter.

5.9.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.10CmdCheckModuleVersion Method

5.10.1Description
This method checks the required power supply of the connected module(s) and returns an array of populated
SMBus addresses. After successful execution, the bus is remained powered and the modules in SMBus mode.

5.10.2Syntax

Visual Basic:
Function CmdCheckModuleVersion(pVolt As Byte, [Format As Long = 1])

C++:
HRESULT CmdCheckModuleVersion(/*[out]*/ unsigned char* pVolt, /*[in, defaultvalue(1)]*/

long Format, /*[out, retval]*/ VARIANT* pVal);

5.10.3Parameters

pVolt
An address of Byte variable that will receive the operating voltage of the connected module(s). Meaning
of the value is as follows: 0-no module(s); 3 – 3V module; 5 – 5V module.

Format
A long specifying the format of the returned data in pVal. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pVal
An address of VARIANT variable that will receive an array of SMB addresses of the modules populated
on the bus. The caller is responsible to call VariantClear on that variable when it is no longer needed.

MLX90614 PSF Library Object Model 04-11-10 - 12 -

EVB - PSF - MLX90614
Product Specific Function description

5.10.4Return value

Visual Basic:
A Variant containing an array of SMB addresses of the modules populated on the bus. Representation
of the data depends on Format parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal contains an empty variant.

5.11CmdSendRequest Method

5.11.1Description
Switches the operating mode to SMBus.

5.11.2Syntax

Visual Basic:
Sub CmdSendRequest()

C++:
HRESULT CmdSendRequest();

5.11.3Parameters

None

5.11.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.12CmdReportAddresses Method

5.12.1Description
This method returns an array of populated SMBus addresses.

5.12.2Syntax

Visual Basic:
Function CmdReportAddresses([Format As Long = 1])

MLX90614 PSF Library Object Model 04-11-10 - 13 -

EVB - PSF - MLX90614
Product Specific Function description

C++:
HRESULT CmdReportAddresses(/*[in, defaultvalue(1)]*/ long Format,

/*[out, retval]*/ VARIANT* pVal);

5.12.3Parameters

Format
A long specifying the format of the returned data in pVal. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pVal
An address of VARIANT variable that will receive an array of SMB addresses of the modules populated
on the bus. The caller is responsible to call VariantClear on that variable when it is no longer needed.

5.12.4Return value

Visual Basic:
A Variant containing an array of SMB addresses of the modules populated on the bus. Representation
of the data depends on Format parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains a valid value.
Any other error code The operation failed. *pVal contains an empty variant.

5.13CheckPosition Method

5.13.1Description
This method checks whether the module is connected properly and exits with an error if it is not.

5.13.2Syntax

Visual Basic:
Sub CheckPosition()

C++:
HRESULT CheckPosition();

5.13.3Parameters

MLX90614 PSF Library Object Model 04-11-10 - 14 -

EVB - PSF - MLX90614
Product Specific Function description

None

5.13.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.14SetSMBAddress Method

5.14.1Description
Sets the SMB address of the module which will be accessed with the next commands.

5.14.2Syntax

Visual Basic:
Sub SetSMBAddress(Addr As Byte)

C++:
HRESULT SetSMBAddress (/*[in]*/ unsigned char Addr);

5.14.3Parameters

Addr
A Byte specifying the SMB address of the module which will be accessed with the next commands.

5.14.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.15CmdSetSMBSpeed Method

5.15.1Description
Sets SMBus speed.

5.15.2Syntax

Visual Basic:
Sub CmdSetSMBSpeed(Speed As Byte)

MLX90614 PSF Library Object Model 04-11-10 - 15 -

EVB - PSF - MLX90614
Product Specific Function description

C++:
HRESULT CmdSetSMBSpeed(/*[in]*/ unsigned char Speed);

5.15.3Parameters

Speed
A Byte specifying the SMBus speed.

5.15.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.16CmdSetSupplyVoltage Method

5.16.1Description
Sets supply voltage.

5.16.2Syntax

Visual Basic:
Sub CmdSetSupplyVoltage(Volt As Byte)

C++:
HRESULT CmdSetSupplyVoltage(/*[in]*/ unsigned char Volt);

5.16.3Parameters

Volt
A Byte specifying supply voltage. Meaning is as follows: 0->no supply; 1->5V; 2->2.45V; 3->3V.

5.16.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

MLX90614 PSF Library Object Model 04-11-10 - 16 -

EVB - PSF - MLX90614
Product Specific Function description

5.17CmdRestartModule Method

5.17.1Description
Restarts the connected module by turning the power off and on.

5.17.2Syntax

Visual Basic:
Sub CmdRestartModule()

C++:
HRESULT CmdRestartModule();

5.17.3Parameters

None

5.17.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.18CmdSetSleepMode Method

5.18.1Description
Activates or deactivates sleep mode.

5.18.2Syntax

Visual Basic:
Sub CmdSetSleepMode(btOn As Byte)

C++:
HRESULT CmdSetSleepMode(/*[in]*/ unsigned char btOn);

5.18.3Parameters

btOn
A Byte specifying whether the connected module to be placed in sleep mode (0) or awoken (1).

MLX90614 PSF Library Object Model 04-11-10 - 17 -

EVB - PSF - MLX90614
Product Specific Function description

5.18.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.19SetApplicationMode Method

5.19.1Description
This method sets the module in application mode.

5.19.2Syntax

Visual Basic:
Sub SetApplicationMode()

C++:
HRESULT SetApplicationMode();

5.19.3Parameters

None

5.19.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.20SetCalibrationMode Method

5.20.1Description
This method sets the module in calibration mode.

5.20.2Syntax

Visual Basic:
Sub SetCalibrationMode()

C++:
HRESULT SetCalibrationMode();

MLX90614 PSF Library Object Model 04-11-10 - 18 -

EVB - PSF - MLX90614
Product Specific Function description

5.20.3Parameters

None

5.20.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.21CmdReadRam Method

5.21.1Description
This method reads a word from the specified RAM address of the module.

5.21.2Syntax

Visual Basic:
Function CmdReadRam(Addr as Byte) As Long

C++:
HRESULT CmdReadRam (/*[in]*/ unsigned char Addr, /*[out, retval]*/ long* pVal);

5.21.3Parameters

Addr
A Byte specifying the address to be read.

pVal
An address of Long variable that will receive data read from the module. Only 16 LSB are meaningful.

5.21.4Return value

Visual Basic:
A Long containing the data read from the module. Only 16 LSB are meaningful.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains valid value.
Any other error code The operation failed. *pVal contains 0.

MLX90614 PSF Library Object Model 04-11-10 - 19 -

EVB - PSF - MLX90614
Product Specific Function description

5.22CmdWriteRam Method

5.22.1Description
This method writes a data word to the specified RAM address of the module.

5.22.2Syntax

Visual Basic:
Sub CmdWriteRam(Addr As Byte, Val As Long)

C++:
HRESULT CmdWriteRam(/*[in]*/ unsigned char Addr, /*[in]*/ long Val);

5.22.3Parameters

Addr
A Byte specifying the address to be written.

Val
A Long containing the data to be written. Only 16 LSB are meaningful.

5.22.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.23CmdReadEeprom Method

5.23.1Description
This method reads a word from the specified EEPROM address of the module.

5.23.2Syntax

Visual Basic:
Function CmdReadEeprom(Addr as Byte) As Long

C++:
HRESULT CmdReadEeprom (/*[in]*/ unsigned char Addr, /*[out, retval]*/ long* pVal);

5.23.3Parameters

MLX90614 PSF Library Object Model 04-11-10 - 20 -

EVB - PSF - MLX90614
Product Specific Function description

Addr
A Byte specifying the address to be read.

pVal
An address of Long variable that will receive data read from the module. Only 16 LSB are meaningful.

5.23.4Return value

Visual Basic:
A Long containing the data read from the module. Only 16 LSB are meaningful.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pVal contains valid value.
Any other error code The operation failed. *pVal contains 0.

5.24CmdWriteEeprom Method

5.24.1Description
This method writes a data word to the specified EEPROM address of the module.

5.24.2Syntax

Visual Basic:
Sub CmdWriteEeprom(Addr As Byte, Val As Long)

C++:
HRESULT CmdWriteEeprom (/*[in]*/ unsigned char Addr, /*[in]*/ long Val);

5.24.3Parameters

Addr
A Byte specifying the address to be written.

Val
A Long containing the data to be written. Only 16 LSB are meaningful.

5.24.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

MLX90614 PSF Library Object Model 04-11-10 - 21 -

EVB - PSF - MLX90614
Product Specific Function description

5.25CmdEraseEeprom Method

5.25.1Description
This method erases the specified EEPROM address of the module. Usage of this method is not mandatory, i.e. it
is not necessary to call it before CmdWriteEeprom.

5.25.2Syntax

Visual Basic:
Sub CmdEraseEeprom(Addr As Byte)

C++:
HRESULT CmdEraseEeprom (/*[in]*/ unsigned char Addr);

5.25.3Parameters

Addr
A Byte specifying the address to be erased.

5.25.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.26CmdCapturePWM Method

5.26.1Description
This method captures two sequential periods of PWM signal from the module.

5.26.2Syntax

Visual Basic:
Sub CmdCapturePWM(pPeriod1 As Single, pPulse1 As Single, pPeriod2 As Single, pPulse2 As

Single)

C++:
HRESULT CmdCapturePWM(/*[out]*/ float* pPeriod1, /*[out]*/ float* pPulse1,
 /*[out]*/ float* pPeriod2, /*[out]*/ float* pPulse2);

5.26.3Parameters

MLX90614 PSF Library Object Model 04-11-10 - 22 -

EVB - PSF - MLX90614
Product Specific Function description

Period1
An address of Single variable that will receive the duration of the first period in [s].

Pulse1
An address of Single variable that will receive the duration of the first pulse in [s].

Period2
An address of Single variable that will receive the duration of the second period in [s].

Pulse2
An address of Single variable that will receive the duration of the second pulse in [s].

5.26.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.27CapturePWM Method

5.27.1Description
This method captures two sequential periods of PWM signal from the module and returns corresponding
temperature values. Conversion is done according to data specified in EEPROM.

5.27.2Syntax

Visual Basic:
Sub CapturePWM(pTemp1 As Single, pTemp2 As Single)

C++:
HRESULT CapturePWM(/*[out]*/ float* pTemp1, /*[out]*/ float* pTemp2);

5.27.3Parameters

pTemp1
An address of Single variable that will receive the first temperature [ºC].

pTemp2
An address of Single variable that will receive the second temperature [ºC].

5.27.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning

MLX90614 PSF Library Object Model 04-11-10 - 23 -

EVB - PSF - MLX90614
Product Specific Function description

S_OK The operation completed successfully.
Any other error code The operation failed.

5.28ResetHardware Method

5.28.1Description
Resets the attached device. Also exits from the bootloader mode.

5.28.2Syntax

Visual Basic:
Sub ResetHardware()

C++:
HRESULT ResetHardware();

5.28.3Parameters

None

5.28.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.29GetMainHardwareID Method

5.29.1Description
Sends GetHardwareID_Main command to the attached device and returns the response.

5.29.2Syntax

Visual Basic:
Function GetMainHardwareID([Format as Long = 1])

C++:
HRESULT GetMainHardwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarID);

5.29.3Parameters

MLX90614 PSF Library Object Model 04-11-10 - 24 -

EVB - PSF - MLX90614
Product Specific Function description

Format
A long specifying the format of the returned data in pvarID. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

5.29.4Return value

Visual Basic:
A Variant containing the hardware ID.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

5.30GetSoftwareID Method

5.30.1Description
Sends GetSoftwareID command to the attached device and returns the response.

5.30.2Syntax

Visual Basic:
Function GetSoftwareID([Format as Long = 1])

C++:
HRESULT GetSoftwareID (/*[in]*/ long Format, /*[out][retval]*/ VARIANT* pvarID);

5.30.3Parameters

Format
A long specifying the format of the returned data in pvarID. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary
data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

MLX90614 PSF Library Object Model 04-11-10 - 25 -

EVB - PSF - MLX90614
Product Specific Function description

pvarID
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

5.30.4Return value

Visual Basic:
A Variant containing the software ID.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvarID contains a valid value.
Any other error code The operation failed. *pvarID contains zero.

5.31SendCommand Method

5.31.1Description
Sends the requested command to the EVB and returns the response.

5.31.2Syntax

Visual Basic:
Function SendCommand(Cmd as Byte, [vParameters], [Format as Long = 1])

C++:
HRESULT SendCommand((/*[in]*/ unsigned char Cmd, /*[in][optional]*/ VARIANT

vParameters, /*[in]*/ long Format, /*[out][retval]*/ VARIANT*
pvRes);

5.31.3Parameters

Cmd
A Byte specifying the code of the command to send.

vParameters
A VARIANT containing optional command parameters. In case the command does not have parameters
it must be an empty variant. The value of the Format parameter is ignored in the latter case. Optional, the
default is an empty variant.

Format
A long specifying the format of the returned data in pvarID. Possible values are:
Value Format
1 Return value is an array of bytes. This is the preferred format for Visual Basic

applications. This is the default value.
2 Return value is an ANSI string packed in bstrVal member of *pvarID. This is the

preferred format for C++ applications because of the best performance. It is a binary

MLX90614 PSF Library Object Model 04-11-10 - 26 -

EVB - PSF - MLX90614
Product Specific Function description

data so the string can contain zeroes and may not be zero terminated. Callers can get its
real length by calling SysStringByteLen API on bstrVal member.

pvRes
An address of VARIANT variable that will receive the return value of the method. The caller is
responsible to call VariantClear on that variable when it is no longer needed.

5.31.4Return value

Visual Basic:
A Variant containing the response from the EVB.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pvRes contains a valid value.
Any other error code The operation failed. *pvRes contains an empty variant.

5.32EnterBootLoader Method

5.32.1Description
Sends Goto_BootLoader command to the attached device.

5.32.2Syntax

Visual Basic:
Function EnterBootLoader() As Byte

C++:
HRESULT EnterBootLoader(/*[out, retval]*/ unsigned char* pbtMode);

5.32.3Parameters

pbtMode
An address of byte variable that will receive the mode of the bootloader software after executing the
command: 1 – start-up mode, 2 – programming mode, 0 – an error has occurred.

5.32.4Return value

Visual Basic:
A Byte containing the mode of the bootloader software after executing the command: 1 – start-up
mode, 2 – programming mode, 0 – an error has occurred.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pbtMode contains a valid value.

MLX90614 PSF Library Object Model 04-11-10 - 27 -

EVB - PSF - MLX90614
Product Specific Function description

Any other error code The operation failed. *pbtMode contains zero.

5.33ExitBootLoader Method

5.33.1Description
Sends Exit_BootLoader command to the attached device.

5.33.2Syntax

Visual Basic:
Sub ExitBootLoader()

C++:
HRESULT ExitBootLoader();

5.33.3Parameters

None

5.33.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.34BLUploadIntelHexFile Method

5.34.1Description
Uploads Hex file with firmware into the attached device. First the device is set in bootloader mode. Then the
lines from the file are sent. At the end ExitBootloader command is issued in order to start-up the newly uploaded
firmware.

5.34.2Syntax

Visual Basic:
Sub BLUploadIntelHexFile(FileName As String, Progress As Object, [vHint])

C++:
HRESULT BLUploadIntelHexFile(/*[in]*/BSTR FileName,

/*[in]*/LPDISPATCH Progress,
/*[in,opt]*/VARIANT vHint);

MLX90614 PSF Library Object Model 04-11-10 - 28 -

EVB - PSF - MLX90614
Product Specific Function description

5.34.3Parameters

FileName
Specifies full path name of the Hex file.

Progress
Object that implements IMPTProgressCallback interface. It should have implementation of methods
OnStart, OnProgress and OnEnd. Nothing (NULL) can be passed if the callback is not needed.

vHint
A Variant that is sent back to callback object as parameter in Onxxx methods.

5.34.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.35BLSendIntelHexLine Method

5.35.1Description
Sends SendIntelHexFile command to the attached device. The EVB must be in bootloader programming mode in
order to execute this command properly.

5.35.2Syntax

Visual Basic:
Sub BLSendIntelHexLine(vHLine, [Format As Long = 1])

C++:
HRESULT BLSendIntelHexLine(/*[in]*/VARIANT vHLine, /*[in]*/long Format);

5.35.3Parameters

vHLine
Specifies one line of a Hex file to be programmed.

Format
A long specifying the format of the data in vHLine. Possible values are:
Value Format
1 vHLine is an array of bytes. This is the default value.
2 vHLine is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

3 vHLine is an Unicode string.

MLX90614 PSF Library Object Model 04-11-10 - 29 -

EVB - PSF - MLX90614
Product Specific Function description

5.35.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.36BLVerifyIntelHexFile Method

5.36.1Description
Compares firmware that is currently in the EVB with one in selected hex file. First the device is set in bootloader
mode. Then each line from the file is compared with the corresponding area from the EVBs program memory.
At the end ExitBootloader command is issued.

5.36.2Syntax

Visual Basic:
Sub BLVerifyIntelHexFile(FileName As String, Progress As Object, [vHint])

C++:
HRESULT BLVerifyIntelHexFile (/*[in]*/BSTR FileName,

/*[in]*/LPDISPATCH Progress,
/*[in,opt]*/VARIANT vHint);

5.36.3Parameters

FileName
Specifies full path name of the Hex file.

Progress
Object that implements IMPTProgressCallback interface. It should have implementation of methods
OnStart, OnProgress and OnEnd. Nothing (NULL) can be passed if the callback is not needed.

vHint
A Variant that is sent back to callback object as parameter in Onxxx methods.

5.36.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

MLX90614 PSF Library Object Model 04-11-10 - 30 -

EVB - PSF - MLX90614
Product Specific Function description

5.37BLVerifyIntelHexLine Method

5.37.1Description
Compares one line from the hex file with corresponding data of the firmware currently present in the EVB.

5.37.2Syntax

Visual Basic:
Sub BLVerifyIntelHexLine(vHLine, [Format As Long = 1])

C++:
HRESULT BLVerifyIntelHexLine(/*[in]*/VARIANT vHLine, /*[in]*/long Format);

5.37.3Parameters

vHLine
Specifies one line of a Hex file to be compared.

Format
A long specifying the format of the data in vHLine. Possible values are:
Value Format
1 vHLine is an array of bytes. This is the default value.
2 vHLine is an ANSI string packed in bstrVal member. This is the preferred format for

C++ applications because of the best performance. It is a binary data so the string can
contain zeroes and may not be zero terminated.

3 vHLine is an Unicode string.

5.37.4Return value

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully.
Any other error code The operation failed.

5.38ResponseTimeout Property

5.38.1Description
This property gets/sets the time (in [ms]) that is allowed to elapse before signaling timeout for a particular
operation. During this period attached device should start sending the response/acknowledge for the operation or
else the communication layer will generate an error.

5.38.2Syntax

Visual Basic:
Property ResponseTimeout as Long

MLX90614 PSF Library Object Model 04-11-10 - 31 -

EVB - PSF - MLX90614
Product Specific Function description

C++:
HRESULT get_ResponseTimeout(/*[out,retval]*/ long* pValue);
HRESULT set_ResponseTimeout(/*[in]*/ long Value);

5.38.3Parameters

pValue
An address of long variable that receives current value (in [ms])of the property.

Value
A Long specifying new value (in [ms]) for the property.

5.38.4Return value

Visual Basic:
A Long containing current value (in [ms])of the property.

C++:
The return value obtained from the returned HRESULT is one of the following:
Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.
Any other error code The operation failed.

5.39CommunicationLog Property

5.39.1Description
This property specifies whether logging information is generated from the attached communication channel.

5.39.2Syntax

Visual Basic:
Property CommunicationLog as Boolean

C++:
HRESULT get_CommunicationLog(/*[out,retval]*/ VARIANT_BOOL* pValue);
HRESULT set_CommunicationLog(/*[in]*/ VARIANT_BOOL Value);

5.39.3Parameters

pValue
An address of VARIANT_BOOL variable that receives current value of the property.
VARIANT_TRUE means that logging is active, VARIANT_FALSE means inactive.

Value
A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE activates the logging,
VARIANT_FALSE deactivates it.

MLX90614 PSF Library Object Model 04-11-10 - 32 -

EVB - PSF - MLX90614
Product Specific Function description

5.39.4Return value

Visual Basic:
True if logging is active, False otherwise.

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.
Any other error code The operation failed.

MLX90614 PSF Library Object Model 04-11-10 - 33 -

EVB - PSF - MLX90614
Product Specific Function description

6 Enumeration constants

6.1 ParamCodesEEPROM enumeration
The following constants refer to parameters in EEPROM. They are used by GetEEParameterCode,
SetEEParameterCode, GetEEParameterValue and SetEEParameterValue methods.
Parameters with translation value ‘-‘ are not supported by GetEEParameterValue and
SetEEParameterValue methods.

Constant

V
al

ue

B
it

s Translation
value Description

CodeTomax 1 16 float [ºC]
CodeTomin 2 16 float [ºC]
CodePWMControl 3 16 -
CodeTarange 4 16 -
CodeKemissivity 5 16 -
CodeConfig1 6 16 -
CodeSlaveAddr 7 16 -
CodeThermoShock 8 16 -
CodeMovingAverage 9 16 -
CodeID1 10 16 -
CodeID2 11 16 -
CodeID3 12 16 -
CodeID4 13 16 -
CodePWMExtended 14 1 -
CodePWMEnable 15 1 -
CodePWMSDA 16 1 -
CodeThermoRelay 17 1 -
CodePWMPeriodRep 18 5 Byte [times]
CodePWMPeriod 19 7 float [s]
CodeTamin 20 8 float [ºC]
CodeTamax 21 8 float [ºC]
CodeIIRFilt 22 3 -
CodePTAT 23 1 -
CodePWMData 24 2 -
CodeDualZone 25 1 -
CodeDAlpha 26 1 -
CodeFIRFilt 27 3 -
CodeGain 28 3 -
CodeVirDta 29 1 -
CodeT1 30 8 -
CodeT2 31 8 -

MLX90614 PSF Library Object Model 04-11-10 - 34 -

EVB - PSF - MLX90614
Product Specific Function description

7 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with Melexis for current information. This
product is intended for use in normal commercial applications. Applications requiring extended temperature
range, unusual environmental requirements, or high reliability applications, such as military, medical life-
support or life-sustaining equipment are specifically not recommended without additional processing by
Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2004 Melexis NV. All rights reserved.

website at:
www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: All other locations:
Phone: +32 13 67 04 95 Phone: +1 603 223 2362

E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified

MLX90614 PSF Library Object Model 04-11-10 - 35 -

	1Contents
	2Introduction
	3Software Structure
	3.1Object Model
	3.2Objects with Interfaces

	4PSF090614EVMLXManager Object
	4.1Background

	5PSF090614EVMLXDevice Object
	5.1Background
	5.2Scope of the PSF090614EVMLXDevice object
	5.3ReadFullDevice Method
	5.3.1Description
	5.3.2Syntax
	5.3.3Parameters
	5.3.4Return value

	5.4ProgramDevice Method
	5.4.1Description
	5.4.2Syntax
	5.4.3Parameters
	5.4.4Return value

	5.5DeviceReplaced Method
	5.5.1Description
	5.5.2Syntax
	5.5.3Parameters
	5.5.4Return value

	5.6GetEEParameterCode Method
	5.6.1Description
	5.6.2Syntax
	5.6.3Parameters
	5.6.4Return value

	5.7SetEEParameterCode Method
	5.7.1Description
	5.7.2Syntax
	5.7.3Parameters
	5.7.4Return value

	5.8GetEEParameterValue Method
	5.8.1Description
	5.8.2Syntax
	5.8.3Parameters
	5.8.4Return value

	5.9SetEEParameterValue Method
	5.9.1Description
	5.9.2Syntax
	5.9.3Parameters
	5.9.4Return value

	5.10CmdCheckModuleVersion Method
	5.10.1Description
	5.10.2Syntax
	5.10.3Parameters
	5.10.4Return value

	5.11CmdSendRequest Method
	5.11.1Description
	5.11.2Syntax
	5.11.3Parameters
	5.11.4Return value

	5.12CmdReportAddresses Method
	5.12.1Description
	5.12.2Syntax
	5.12.3Parameters
	5.12.4Return value

	5.13CheckPosition Method
	5.13.1Description
	5.13.2Syntax
	5.13.3Parameters
	5.13.4Return value

	5.14SetSMBAddress Method
	5.14.1Description
	5.14.2Syntax
	5.14.3Parameters
	5.14.4Return value

	5.15CmdSetSMBSpeed Method
	5.15.1Description
	5.15.2Syntax
	5.15.3Parameters
	5.15.4Return value

	5.16CmdSetSupplyVoltage Method
	5.16.1Description
	5.16.2Syntax
	5.16.3Parameters
	5.16.4Return value

	5.17CmdRestartModule Method
	5.17.1Description
	5.17.2Syntax
	5.17.3Parameters
	5.17.4Return value

	5.18CmdSetSleepMode Method
	5.18.1Description
	5.18.2Syntax
	5.18.3Parameters
	5.18.4Return value

	5.19SetApplicationMode Method
	5.19.1Description
	5.19.2Syntax
	5.19.3Parameters
	5.19.4Return value

	5.20SetCalibrationMode Method
	5.20.1Description
	5.20.2Syntax
	5.20.3Parameters
	5.20.4Return value

	5.21CmdReadRam Method
	5.21.1Description
	5.21.2Syntax
	5.21.3Parameters
	5.21.4Return value

	5.22CmdWriteRam Method
	5.22.1Description
	5.22.2Syntax
	5.22.3Parameters
	5.22.4Return value

	5.23CmdReadEeprom Method
	5.23.1Description
	5.23.2Syntax
	5.23.3Parameters
	5.23.4Return value

	5.24CmdWriteEeprom Method
	5.24.1Description
	5.24.2Syntax
	5.24.3Parameters
	5.24.4Return value

	5.25CmdEraseEeprom Method
	5.25.1Description
	5.25.2Syntax
	5.25.3Parameters
	5.25.4Return value

	5.26CmdCapturePWM Method
	5.26.1Description
	5.26.2Syntax
	5.26.3Parameters
	5.26.4Return value

	5.27CapturePWM Method
	5.27.1Description
	5.27.2Syntax
	5.27.3Parameters
	5.27.4Return value

	5.28ResetHardware Method
	5.28.1Description
	5.28.2Syntax
	5.28.3Parameters
	5.28.4Return value

	5.29GetMainHardwareID Method
	5.29.1Description
	5.29.2Syntax
	5.29.3Parameters
	5.29.4Return value

	5.30GetSoftwareID Method
	5.30.1Description
	5.30.2Syntax
	5.30.3Parameters
	5.30.4Return value

	5.31SendCommand Method
	5.31.1Description
	5.31.2Syntax
	5.31.3Parameters
	5.31.4Return value

	5.32EnterBootLoader Method
	5.32.1Description
	5.32.2Syntax
	5.32.3Parameters
	5.32.4Return value

	5.33ExitBootLoader Method
	5.33.1Description
	5.33.2Syntax
	5.33.3Parameters
	5.33.4Return value

	5.34BLUploadIntelHexFile Method
	5.34.1Description
	5.34.2Syntax
	5.34.3Parameters
	5.34.4Return value

	5.35BLSendIntelHexLine Method
	5.35.1Description
	5.35.2Syntax
	5.35.3Parameters
	5.35.4Return value

	5.36BLVerifyIntelHexFile Method
	5.36.1Description
	5.36.2Syntax
	5.36.3Parameters
	5.36.4Return value

	5.37BLVerifyIntelHexLine Method
	5.37.1Description
	5.37.2Syntax
	5.37.3Parameters
	5.37.4Return value

	5.38ResponseTimeout Property
	5.38.1Description
	5.38.2Syntax
	5.38.3Parameters
	5.38.4Return value

	5.39CommunicationLog Property
	5.39.1Description
	5.39.2Syntax
	5.39.3Parameters
	5.39.4Return value

	6Enumeration constants
	6.1ParamCodesEEPROM enumeration

	7Disclaimer

