

TACTILE SENSING ARRAY

Magnetic Soft Tactile Sensing Surface for Palpation in Minimally Invasive Surgery

> <u>Syrine Mansour</u>, Gael Close Melexis, Switzerland

Motivation

Device

Implementation

Minimally Invasive Surgery (MIS)

- Surgical procedures e.g. Laparoscopy, Endoscopy
- Instruments inserted through small incisions or body orifices

Less tissue damage, less post-operative trauma

Indirect contact with tissues: loss of the sense of touch

Challenge: Reliably localize malignant tumors through palpation in MIS

Tactile sensing in MIS

Capacitive:

Change of electrical capacitance of the dielectric medium separating electrodes

- Needs humidity calibration [3]
- Sensitive to electromagnetic noise [3]

Optical:

Light transmission through an optical fiber to a detector

- Bulky
- High power consumption [3]
- High cost [3]

Grounded Ground Ground Strips Printed Circuit Board (b)

CAD of a capacitive tactile sensor for MIS [1]

Prototype of an optical tactile sensor for MIS [2]

[1]:A. S. Naidu, R. V. Patel and M. D. Naish, "Low-Cost Disposable Tactile Sensors for Palpation in Minimally Invasive Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 127-137, Feb. 2017, doi: 10.1109/TMECH.2016.2623743.
[2]: H. Xie, H. Liu, L. D. Seneviratne and K. Althoefer, "An Optical Tactile Array Probe Head for Tissue Palpation During Minimally Invasive Surgery," in IEEE Sensors Journal, vol. 14, no. 9, pp. 3283-3291, Sept. 2014, doi: 10.1109/JSEN.2014.2328182.
[3]: Othman Wael, Lai Zhi-Han A., Abril Carlos, Barajas-Gamboa Juan S., Corcelles Ricard, Kroh Matthew, Qasaimeh Mohammad A., "Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies", Frontiers in Robotics and AI vol 8, 2022

Device: Palpaxis

Magnetic:

Change in magnetic field detected by the Hall effect

- 3D detection
- Magnetic stray field immunity

Device: Palpaxis

Palpaxis mounted on a Minimally Invasive Surgical instrument

Palpation in Minimally Invasive Surgery

Device: Palpaxis

- Layer architecture
- Surface of 45[mm] x 25[mm] for 24 taxels
- Physical pitch 7.56 [mm]

Architecture of Palpaxis, the tactile sensing surface

Design parameters

Integrated circuit Tri-axis technology

Material

Viscoelastic, Hardness: 30 shore A

Fit for short invasive operations with limited contact duration (less than 24h), Biocompatibility: ISO10993

SENSING SPOTS - HALL PLATES

MLX90377 Dual-Die Dual-Disk Multiple pixels since die has 2 sensing spots, each surrounded by HE [4]

PACKAGE

The two adjacent dies are packaged inside a TSSOP16 with independent output pins Width×Length×Height [mm]: 5.0×6.4×1.0

9

[4]: N. Dupré, Y. Bidaux, O. Dubrulle and G. F. Close, "A Stray-Field-Immune Magnetic Displacement Sensor With 1% Accuracy," in IEEE Sensors Journal, vol. 20, no. 19, pp. 11405-11411, 1 Oct.1, 2020, doi: 10.1109/JSEN.2020.2998289.

Prototyping Step 1

LAYOUT

Array of 6 x 4 chips Vertical spacing: 3 [mm] Horizontal spacing; 1 [mm]

MOLD

Tightly fixed with screws directly above the sensor Silicone casting directly on chips: better adherence

CHIP SOLDERING

Soldering paste applied through the stencil Post curing in IR IC Heater (7min, reaches 250)

CAPACITANCES - CONNECTORS

Soldering paste was applied with a syringe above the pins Element placement with tweezers Post curing at high temperature

RIDGES

Inspired from the human skin, texture of the epiderm

NEODYMIUM MAGNETS

Shape: Disk Material: NdFeB Diameter: 2 [mm], Height: 1 [mm] Br (Residual magnetism) : 1.37 - 1.42 [T] Direction of magnetisation: axial Position: centered above each chip

Prototyping Step 2

A) CAD drawing

B) 3D printing

C) Mold spraying with lubricant

E) Silicone curing

F) Extraction from mold

G) Magnet insertion

Fabrication protocol of the soft layer

Working principle

12

Hardware optimization

Dimensional constraint -> miniaturized version

Chip-on-board

- Strip of 31[mm] x 6.5[mm] for 16 taxels
- Physical pitch: 3.30[mm]
- Elongated shape to fit on a trocar
- Enhance spatial resolution
- Bare dies
- Flip chip assembly

Recapitulation of characteristics **Parameter** Value Resolution Weight of a peanut, around 0.3 [mN] **Maximum sensed Normal Force** 6 [N] **Top layer** High compliance Biocompatibility Weak tissue slippage

MADRID

Thank you for your attention! Questions?

Appendix

Experimental setup for indentation and force calibration

EMSA 22 Magnetic stray field

Helmholtz coils

SOURCE

Natural: from non-man-made objects, e.g., the Earth's magnetic field Environmental: from nearby man-made objects (neighboring electronics)

SF IMMUNITY ALGORITHM

Differential measurement Relative variations of magnetic signal readout

Experimental setup for stray field effect

Stray field immunity

MADRID

Data acquisition

Recapitulation of characteristics

Parameter	Value
Number of taxels	16 taxels / 24 taxels (depending on hardware model)
Physical pitch (center-to-center distance of chips)	3.30[mm] / 7.56[mm]
Spatial resolution	Lower than pitch: machine learning model
Scan rate	>= 100[ms] per acquisition
Resolution	Weight of a peanut, around 0.4 [mN]
Maximum sensed Normal Force	6 [N]
Top layer	High compliance - Biocompatibility - Weak tissue slippage

MADRID

Device: Palpaxis

Goal is to perform palpation in minimally invasive surgery

Surface of 45[mm] x 25[mm] for 24 taxels Physical pitch 7.56 [mm]

Architecture of the device

