US1881
Hall Latch – High Sensitivity

Features and Benefits
- Wide operating voltage range from 3.5V to 24V
- High magnetic sensitivity – Multi-purpose
- CMOS technology
- Chopper-stabilized amplifier stage
- Low current consumption
- Open drain output
- Thin SOT23 3L and flat TO-92 3L both RoHS Compliant packages

Applications
- Automotive, Consumer and Industrial
- Solid-state switch
- Brushless DC motor commutation
- Speed detection
- Linear position detection
- Angular position detection
- Proximity detection

Ordering information

<table>
<thead>
<tr>
<th>Product code</th>
<th>Temperature Code</th>
<th>Package Code</th>
<th>Option code</th>
<th>Packing form code</th>
</tr>
</thead>
<tbody>
<tr>
<td>US1881</td>
<td>E</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US1881</td>
<td>E</td>
<td>UA</td>
<td>AAA-000</td>
<td>BU</td>
</tr>
<tr>
<td>US1881</td>
<td>K</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US1881</td>
<td>K</td>
<td>UA</td>
<td>AAA-000</td>
<td>BU</td>
</tr>
<tr>
<td>US1881</td>
<td>L</td>
<td>SE</td>
<td>AAA-000</td>
<td>RE</td>
</tr>
<tr>
<td>US1881</td>
<td>L</td>
<td>UA</td>
<td>AAA-000</td>
<td>UA</td>
</tr>
</tbody>
</table>

Legend:
Temperature code: L(-40 to 150°C) E(-40 to 85°C) K (-40 to 125°C)
Package Code: SE = TSOT-23L UA = TO92-3L
Packing Form: BU = Bulk RE = Reel
Ordering Example: US1881ESE-AAA-000-RE

1. Functional Diagram

2. General Description

The Melexis US1881 is a Hall-effect latch designed in mixed signal CMOS technology.

The device integrates a voltage regulator, Hall sensor with dynamic offset cancellation system, Schmitt trigger and an open-drain output driver, all in a single package.

Thanks to its wide operating voltage range and extended choice of temperature range, it is quite suitable for use in automotive, industrial and consumer applications.

The device is delivered in a Thin Small Outline Transistor (TSOT) for surface mount process and in a Plastic Single In Line (TO-92 flat) for through-hole mount.

Both 3-lead packages are RoHS compliant.
Contents

Features and Benefits ... 1
Applications .. 1
Ordering information .. 1
1. Functional Diagram ... 1
2. General Description ... 1
3. Glossary of Terms .. 3
4. Absolute Maximum Ratings .. 3
5. Pin Definitions and Descriptions ... 3
6. General Electrical Specifications ... 4
7. Magnetic Specifications ... 4
8. Output Behaviour versus Magnetic Pole ... 4
9. Detailed General Description .. 5
10. Unique Features .. 5
11. Performance Graphs ... 6
 11.1. Magnetic parameters vs. T_A ... 6
 11.2. Magnetic parameters vs. V_{DD} ... 6
 11.3. V_{DSON} vs. T_A ... 6
 11.4. V_{DSON} vs. V_{DD} ... 6
 11.5. I_{DD} vs. T_A .. 6
 11.6. I_{DD} vs. V_{DD} ... 6
 11.7. I_{OFF} vs. T_A ... 7
 11.8. I_{OFF} vs. V_{DD} ... 7
12. Test Conditions ... 7
 12.1. Supply Current ... 7
 12.2. Output Saturation Voltage ... 7
 12.3. Output Leakage Current .. 7
 12.4. Magnetic Thresholds ... 7
13. Application Information ... 8
 13.1. Typical Three-Wire Application Circuit ... 8
 13.2. Two-Wire Circuit .. 8
 13.3. Automotive and Harsh, Noisy Environments Three-Wire Circuit ... 8
14. Application Comments ... 8
15. Standard information regarding manufacturability of Melexis products with different soldering processes ... 9
16. ESD Precautions ... 9
17. Package Information .. 10
 17.1. SE Package (TSOT-3L) .. 10
 17.2. UA Package (TO-92 flat) ... 11
18. Contact .. 12
19. Disclaimer ... 12
3. Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MilliTesla (mT), Gauss</td>
<td>Units of magnetic flux density:</td>
</tr>
<tr>
<td></td>
<td>1mT = 10 Gauss</td>
</tr>
<tr>
<td>RoHS</td>
<td>Restriction of Hazardous Substances</td>
</tr>
<tr>
<td>TSOT</td>
<td>Thin Small Outline Transistor (TSOT package) – also referred with the Melexis package code “SE”</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro-Static Discharge</td>
</tr>
<tr>
<td>BLDC</td>
<td>Brush-Less Direct-Current</td>
</tr>
<tr>
<td>Operating Point (B_{on})</td>
<td>Magnetic flux density applied on the branded side of the package which turns the output driver ON (V_{OUT} = V_{DS(on)})</td>
</tr>
<tr>
<td>Release Point (B_{off})</td>
<td>Magnetic flux density applied on the branded side of the package which turns the output driver OFF (V_{OUT} = high)</td>
</tr>
</tbody>
</table>

4. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{DD}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_{OUT}</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_s</td>
<td>-50 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_j</td>
<td>165</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 1: Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>Operating Temperature Range</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Suffix “E”</td>
<td>T_a</td>
<td>-40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature Suffix “K”</td>
<td>T_a</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature Suffix “L”</td>
<td>T_a</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

5. Pin Definitions and Descriptions

<table>
<thead>
<tr>
<th>SE Pin No</th>
<th>UA Pin No</th>
<th>Name</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>V_{DD}</td>
<td>Supply</td>
<td>Supply Voltage pin</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>OUT</td>
<td>Output</td>
<td>Open Drain Output pin</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td>Ground pin</td>
</tr>
</tbody>
</table>

Table 2: Pin definitions and descriptions
6. General Electrical Specifications

DC Operating Parameters $T_A = 25^\circ C$, $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>Operating</td>
<td>3.5</td>
<td>24</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{PD}</td>
<td>$B < B_{RP}$</td>
<td>5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Saturation Voltage</td>
<td>V_{DSon}</td>
<td>$I_{OUT} = 20mA$, $B > B_{OP}$</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>I_{OFF}</td>
<td>$B < B_{RP}$, $V_{OUT} = 24V$</td>
<td>0.3</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>t_r</td>
<td>$R_L = 1k\Omega$, $C_L = 20pF$</td>
<td>0.25</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Output Fall Time</td>
<td>t_f</td>
<td>$R_L = 1k\Omega$, $C_L = 20pF$</td>
<td>0.25</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Switching Frequency</td>
<td>f_{SW}</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Package Thermal Resistance</td>
<td>R_{TH}</td>
<td>Single layer (1S) Jedec board</td>
<td>301</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Table 3: Electrical specifications

7. Magnetic Specifications

DC Operating Parameters $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Point</td>
<td>B_{OP}</td>
<td>$T_A = 85^\circ C$, E spec.</td>
<td>0.5</td>
<td>9.5</td>
<td></td>
<td>mT</td>
</tr>
<tr>
<td>Release Point</td>
<td>B_{RP}</td>
<td>$T_A = 125^\circ C$, K spec.</td>
<td>-9.5</td>
<td>-0.5</td>
<td></td>
<td>mT</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>B_{HYST}</td>
<td></td>
<td>7</td>
<td>12</td>
<td></td>
<td>mT</td>
</tr>
<tr>
<td>Operating Point</td>
<td>B_{OP}</td>
<td>$T_A = 150^\circ C$, L spec.</td>
<td>0.5</td>
<td>9.5</td>
<td></td>
<td>mT</td>
</tr>
<tr>
<td>Release Point</td>
<td>B_{RP}</td>
<td></td>
<td>-9.5</td>
<td>-0.5</td>
<td></td>
<td>mT</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>B_{HYST}</td>
<td></td>
<td>6</td>
<td>12.5</td>
<td></td>
<td>mT</td>
</tr>
</tbody>
</table>

Table 4: Magnetic specifications

Note: For typical values, please refer to the performance graphs in section 11

8. Output Behaviour versus Magnetic Pole

DC Operating Parameters $T_A = -40^\circ C$ to 150 °C, $V_{DD} = 3.5V$ to 24V (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions (SE)</th>
<th>OUT (SE)</th>
<th>Test Conditions (UA)</th>
<th>OUT (UA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South pole</td>
<td>$B < B_{RP}$</td>
<td>High</td>
<td>$B > B_{OP}$</td>
<td>Low</td>
</tr>
<tr>
<td>North pole</td>
<td>$B > B_{OP}$</td>
<td>Low</td>
<td>$B < B_{RP}$</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 5: Output behaviour versus magnetic pole
9. Detailed General Description

Based on mixed signal CMOS technology, Melexis US1881 is a Hall-effect device with high magnetic sensitivity. This multi-purpose latch suits most of the application requirements.

The chopper-stabilized amplifier uses switched capacitor technique to suppress the offset generally observed with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible and contributes to smaller chip size and lower current consumption than bipolar technology. The small chip size is also an important factor to minimize the effect of physical stress.

This combination results in more stable magnetic characteristics and enables faster and more precise design.

The wide operating voltage from 3.5V to 24V, low current consumption and large choice of operating temperature range according to “L”, “K” and “E” specification make this device suitable for automotive, industrial and consumer applications.

The output signal is open-drain type. Such output allows simple connectivity with TTL or CMOS logic by using a pull-up resistor tied between a pull-up voltage and the device output.

10. Unique Features

The US1881 exhibits latch magnetic switching characteristics. Therefore, it requires both south and north poles to operate properly.

The device behaves as a latch with symmetric operating and release switching points \(B_{op} = |B_{rp}| \). This means magnetic fields with equivalent strength and opposite direction drive the output high and low.

Removing the magnetic field \(B \rightarrow 0 \) keeps the output in its previous state. This latching property defines the device as a magnetic memory.

A magnetic hysteresis \(B_{hyst} \) keeps \(B_{op} \) and \(B_{rp} \) separated by a minimal value. This hysteresis prevents output oscillation near the switching point.
11. Performance Graphs

11.1. Magnetic parameters vs. T_A

11.2. Magnetic parameters vs. V_{DD}

11.3. V_{DSON} vs. T_A

11.4. V_{DSON} vs. V_{DD}

11.5. I_{DD} vs. T_A

11.6. I_{DD} vs. V_{DD}
11.7. $I_{OFF} \text{ vs. } T_A$

11.8. $I_{OFF} \text{ vs. } V_{DD}$

12. Test Conditions

Note: DUT = Device under Test

12.1. Supply Current

Note 1 - The supply current I_{DD} represents the static supply current. OUT is left open during measurement.

Note 2 - The device is put under magnetic field with $B = B_{TOP}$.

12.2. Output Saturation Voltage

Note 1 - The output saturation voltage V_{OSAT} is measured at $V_{DD} = 3.3V$ and $V_{DD} = 24V$.

Note 2 - The device is put under magnetic field with $B = B_{TOP}$.

12.3. Output Leakage Current

Note 1 - The device is put under magnetic field with $B < B_{TOP}$.

12.4. Magnetic Thresholds

Note 1 - B_{TOP} is determined by putting the device under magnetic field swept from B_{PULLUP} up to $B_{PULLDOWN}$ until the output is switched on.

Note 2 - B_{TOP} is determined by putting the device under magnetic field swept from $B_{PULLDOWN}$ down to B_{PULLUP} until the output is switched off.
13. Application Information

13.1. Typical Three-Wire Application Circuit

13.2. Two-Wire Circuit

13.3. Automotive and Harsh, Noisy Environments

Three-Wire Circuit

14. Application Comments

For proper operation, a 100nF bypass capacitor should be placed as close as possible to the device between the VDD and ground pin.

For reverse voltage protection, it is recommended to connect a resistor or a diode in series with the VDD pin. When using a resistor, three points are important:
- the resistor has to limit the reverse current to 50mA maximum (VCC / R1 ≤ 50mA)
- the resulting device supply voltage VDD has to be higher than VDD min (VDD = VCC – R1.IDD)
- the resistor has to withstand the power dissipated in reverse voltage condition (Pd = VCC^2 / R1)

When using a diode, a reverse current cannot flow and the voltage drop is almost constant (=0.7V). Therefore, a 1000Ω/0.25W resistor for 5V application and a diode for higher supply voltage are recommended. Both solutions provide the required reverse voltage protection.

When a weak power supply is used or when the device is intended to be used in noisy environment, it is recommended that figure 13.3 from the Application Information section is used.

The low-pass filter formed by R1 and C1 and the zener diode Z1 bypass the disturbances or voltage spikes occurring on the device supply voltage VDD. The diode D1 provides additional reverse voltage protection.
15. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD’s (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EN60749-20
 Resistance of plastic-encapsulated SMD’s to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD’s (Through Hole Devices)

- EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21
 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

16. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
17. Package Information

17.1. SE Package (TSOT-3L)

Notes:
1. Dimension “D” and “E1” do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on “D” and 0.25mm on “E” per side.
2. Dimension “b” does not include dambar protrusion.

Marking:
Top side: yww
1 = part number (US1881)
y = last digit of year
ww = calendar week

Bottom side: zzzz
zzzz = last 4 digits for lot #

Hall plate location

This table in mm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>L</th>
<th>b</th>
<th>c</th>
<th>e</th>
<th>e1</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>–</td>
<td>0.025</td>
<td>0.85</td>
<td>2.80</td>
<td>2.60</td>
<td>1.50</td>
<td>0.30</td>
<td>0.30</td>
<td>0.10</td>
<td>0.95</td>
<td>1.90</td>
<td>0°</td>
</tr>
<tr>
<td>max</td>
<td>1.00</td>
<td>0.10</td>
<td>0.90</td>
<td>3.00</td>
<td>3.00</td>
<td>1.70</td>
<td>0.50</td>
<td>0.45</td>
<td>0.20</td>
<td>BSC</td>
<td>BSC</td>
<td>8°</td>
</tr>
</tbody>
</table>
17.2. UA Package (TO-92 flat)

Notes:
1. Mold flashes and protrusion are not included.
2. Gate burrs shall not exceed 0.127 mm on the top side.

Hall plate location

Notes:
1. All dimensions are in millimeters
Marking:
1st Line: U18 - Part number (US1881)
2nd Line: yww
 y - last digit of year
 ww - calendar week

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>J</th>
<th>L</th>
<th>L1</th>
<th>S</th>
<th>b1</th>
<th>b2</th>
<th>c</th>
<th>e</th>
<th>e1</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>2.80</td>
<td>3.90</td>
<td>1.40</td>
<td>0.00</td>
<td>2.51</td>
<td>14.0</td>
<td>1.55</td>
<td>0.63</td>
<td>0.35</td>
<td>0.43</td>
<td>0.35</td>
<td>2.51</td>
<td>1.24</td>
</tr>
<tr>
<td>max</td>
<td>3.20</td>
<td>4.30</td>
<td>1.60</td>
<td>0.20</td>
<td>2.72</td>
<td>15.0</td>
<td>1.75</td>
<td>0.84</td>
<td>0.44</td>
<td>0.52</td>
<td>0.44</td>
<td>2.57</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>5°</td>
<td>5°</td>
<td>45°</td>
<td>3°</td>
</tr>
<tr>
<td>max</td>
<td>MAX</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
18. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe, Africa</td>
<td>+32 13 67 04 95</td>
<td>sales_europe@melexis.com</td>
</tr>
<tr>
<td>Americas</td>
<td>+1 603 223 2362</td>
<td>sales_usa@melexis.com</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td>sales_asia@melexis.com</td>
</tr>
</tbody>
</table>

19. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current.

Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

The products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified