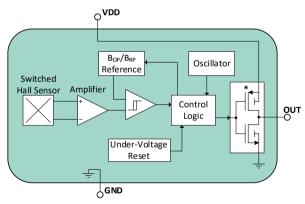
3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

1. Features and Benefits

- µPower operation
 - 0.9µA at 1.8V/11Hz
 - 1.2µA at 3.3V/11Hz
 - 1.2µA at 1.8V/22Hz
 - 1.6µA at 3.3V/22Hz
- Typical sleep current 0.65 μA at 1.8V
- Best in class min/max I_{DD} tolerances for a stable and predictable power budget
- Operating voltage range from 1.6V to 3.6V
- Push-pull or Open Drain output type
- No external components required
- Selectable Sleep time 0.6ms to 800ms
- Ambient temperature from -40°C to 105°C
- Chopper stabilized very sensitive Hall sensor
- Selectable magnetic thresholds and temperature coefficient
- Various magnetic functions: Unipolar, Omnipolar Switch
- Under-Voltage Reset protection
- Packages, RoHS compliant
 - TSOT-3L (SE) 2.8mm x 2.9mm

2. Application Examples


- Brake light/ wake-up switch
- E-Latch / e-door Handle
- Sunvisor / Vanity Mirror
- Button / HMI / Levers
- Seat positioning / folding
- Proximity sensor, Reed switch replacement, open/close detection

3. Description

The MLX92235 is a monolithic magnetic sensor IC utilizing a Hall Effect sensor technology.

It has an integrated logic for automatic Sleep/Awake sequencing enabling 1µA average current consumption without any action from the user (depending on the selected product). During the Awake state the chip is comparing the applied magnetic field to the predefined magnetic thresholds and updates its output accordingly. During Sleep state the OUT state remains unchanged regardless of the magnetic field. The OUT state will be refreshed during the next Awake period. The MLX92235 can be selected with various functions: magnetic thresholds, magnetic functions and sleep times.

The MLX92235 can be used as general replacement of reed switches having the advantage of solid-state reliability. The MLX92235 is suitable for batterypowered devices, lid open/close detection, wake-up switches and other low voltage applications where ultra-low current consumption is critical.

Push-pull output available on some versions

MLX92235 functional diagram Push-pull

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

Contents

1. Features and Benefits	
2. Application Examples	1
3. Description	1
4. Ordering Information	
5. Glossary of Terms	4
6. Absolute Maximum Ratings	5
7. General Electrical Specifications	6
8. Version specific parameters	7
8.1. MLX92235RSE-AAC-001	7
8.2. MLX92235RSE-AAC-003	7
8.3. MLX92235RSE-AAC-101	7
8.4. MLX92235RSE-AAB-101	8
9. Detailed Description	9
9.1. Active magnetic pole definition	9
10. Magnetic Behavior	10
10.1. Unipolar Switch Sensor	10
10.2. Omnipolar Switch Sensor	11
11. Performance graphs	12
11.1. I _{DD_AVG} vs. Temperature	12
11.2. T _{SL} vs. Temperature	13
11.3. B _{HYST} vs. Temperature	14
12. Typical application schematics	15
12.1. Push-Pull Output	15
12.2. Open Drain Output	15
13. Package information	16
13.1. TSOT-3L (SE package)	16
13.1.1. TSOT-3L – Package dimensions	16
13.1.2. TSOT-3L – Sensitive spot	16
13.1.3. TSOT-3L – Package marking/ Pin definition	17
14. IC handling and assembly	

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

14.1. Storage and handling of plastic encapsulated ICs	18
14.2. Assembly of encapsulated ICs	
14.3. Environment and sustainability	
15. Disclaimer	19

3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

4. Ordering Information

Product code	Output type	Sleep time (ms)	Magnetic function	Magnetic thresholds Bop/BRP (mT)
MLX92235RSE-AAC-001	Push-Pull	90	Unipolar Direct South Switch	4.0/2.5
MLX92235RSE-AAC-003	Push-Pull	45	Unipolar Direct South Switch	2.3/1.3
MLX92235RSE-AAC-101	Push-Pull	45	Omnipolar Direct Switch	±2.8/±1.8
MLX92235RSE-AAB-101	Open-Drain	90	Omnipolar Direct Switch	±3.0/±2.0

Legend:

All ordering codes are starting with MLX92235Rxx-AAy-zzz-RE followed by the ordering code details.

Temperature Code:	R = -40°C to 105°C
Package Code:	Rxx = SE: TSOT-3L
Option Code:	AAy = B: Open-Drain, C: Push-Pull
	zzz = 0zz: Unipolar switch, 1zz: Omnipolar switch
Packing Form:	RE = Reel
Ordering example:	MLX92235RSE-AAC-001-RE
Packing Form:	zzz = 0zz: Unipolar switch, 1zz: Omnipolar switch RE = Reel

5. Glossary of Terms

Gauss: G, Tesla: T	Units for the magnetic flux density: 1 mT = 10 G
тс	Temperature Coefficient of the magnetic threshold (in ppm/°C)
Вор	Operating magnetic threshold
B _{RP}	Release magnetic threshold

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

6. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage ⁽¹⁾	V _{DD}	6	V
Supply current ^(1,2)	I _{DD}	10	mA
Reverse supply voltage ⁽¹⁾	V _{DDREV}	-0.5	V
Reverse supply current ^(1, 3)	IDDREV	-10	mA
Open Drain Output voltage ⁽¹⁾	Voutod	6	V
Push-Pull Output voltage ⁽¹⁾	Voutpp	V _{DD} + 0.5	V
Output current ^(1,2)	I _{OUT}	10	mA
Reverse Output voltage ⁽¹⁾	Voutrev	-0.5	V
Reverse Output current ^(1,2)	IOUTREV	-10	mA
Maximum junction temperature	TJ	+125	°C
ESD – HBM ⁽⁴⁾	-	3.5	kV
ESD – CDM ⁽⁵⁾	-	500	V

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

¹ For maximum 1 hour

² Including the current through the protection device

³ Current through the protection device

⁴ Human Body Model according or ANSI/ESDA/JEDEC JS-001 standard

⁵ Charged Device Model according or ANSI/ESDA/JEDEC JS-002 standard

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

7. General Electrical Specifications

Operating conditions V_{DD} = 1.6V to 3.6V, T_A = -40°C to 105°C (unless otherwise specified)

Electrical Parameter	Symbol	Condition	Min	Typ ⁽¹⁾	Мах	Unit
Under Voltage Reset threshold	V _{UVR}		-	1.2	1.4	V
Awaka Supply Current		V _{DD} = 1.8V	-	1.7	2.1	mA
Awake Supply Current	I _{DD_AWK}	V _{DD} = 3.3V	-	2.4	2.9	mA
Cloop Supply Current	1	V _{DD} = 1.8V	-	0.65	1.3	μΑ
Sleep Supply Current	I _{DD_SLP}	V _{DD} = 3.3V	-	0.85	1.7	μΑ
Output-High voltage ⁽³⁾	V _{OH}	I _{OUT} = -1mA	V _{DD} - 0.4	V _{DD} - 0.13	-	V
Output-Low voltage	V _{OL}	I _{OUT} = 1mA	-	0.1	0.3	V
Output turned-on resistance - NMOS	R _{on_nmos}	I _{OUT} = 1mA	-	100	300	Ω
Output turned-on resistance - PMOS ⁽³⁾	R _{on_pmos}	I _{OUT} = -1mA	-	130	400	Ω
Open drain output leakage	I _{OFF}	V _{OUT} = 3.6V	-	_	1	μΑ
Output rise time ^(2,3)	t _R	C _{LOAD} = 50pF	-	0.1	_	μs
Output fall time ⁽²⁾	t⊦	C _{LOAD} = 50pF	-	0.1	—	μs
Power-On time ^(4,5,6)	t _{on}	$V_{DD} = 1.6V$ $\Delta V_{DD} / \Delta t \ge 2V / \mu s$	-	35	80	μs
Power-On state	_	Output state during t_{ON}		High		-
Awake time	t _{AWK}		10	14	18	μs
SE package thermal resistance	R _{THJA}	Single layer PCB, JEDEC standard test boards, still air (LFPM=0)	_	300	_	°C/W

 $^{^1}$ Unless otherwise specified the typical values are defined at T_{A} = +25°C and V_{DD} = 3.3V

² Guaranteed by design and verified by characterization, not production tested

³ Only valid for versions with push-pull output type

⁴ The Power-on time represents the time from reaching V_{DD} = 1.6V to the first refresh of the output state.

⁵ Power-on slew rate is not critical for the proper device start-up

 $^{^{\}rm 6}$ For omnipolar devices one sleep time period has to be added on top of the $t_{\rm ON}$

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

8. Version specific parameters

8.1. MLX92235RSE-AAC-001

Operating conditions V_{DD} = 3.3V, T_A = -40°C to 105°C (unless otherwise specified)

Parameter	Symbol	Condition	Min	Typ ⁽¹⁾	Max	Unit
Operating Point	B _{OP}		1.0	4.0	6.5	mT
Release Point	B _{RP}		0.3	2.5	4.8	mT
Hysteresis	B _{HYST}		1.0	1.5	2.2	mT
Active Pole			South			-
Magnetic Function			Direct Unipolar Switch			-
Output Type				Push-Pull		-
Sleep time	t _{SL}		65	90	110	ms
		V _{DD} = 1.8V	-	0.9	1.9	μA
Average Supply Current IDD	I _{DD_AVG}	V _{DD} = 3.3V	-	1.2	2.4	μΑ
	_	V _{DD} = 3.6V	-	1.3	2.5	μA

8.2. MLX92235RSE-AAC-003

Operating conditions V_{DD} = 3.3V, T_A = -40°C to 105°C (unless otherwise specified)

Parameter	Symbol	Condition	Min	Typ ⁽¹⁾	Max	Unit
Operating Point	B _{OP}		0.5	2.3	4.3	mT
Release Point	B _{RP}		0.1	1.3	2.5	mT
Hysteresis	B _{HYST}		0.2	1.0	1.8	mT
Active Pole			South			-
Magnetic Function			Direct Unipolar Switch			-
Output Type				Push-Pull		-
Sleep time	t _{SL}		32	45	55	ms
		V _{DD} = 1.8V	-	1.2	2.3	μA
Average Supply Current	I _{DD_AVG}	V _{DD} = 3.3V	-	1.6	2.9	μA
		V _{DD} = 3.6V	-	1.7	3.0	μA

8.3. MLX92235RSE-AAC-101

Operating conditions V_{DD} = 3.3V, T_A = -40°C to 105°C (unless otherwise specified)

Parameter	Symbol	Condition	Min	Typ ⁽¹⁾	Max	Unit
Operating Point South Pole	B _{OP_SOUTH}		0.4	2.8	5.1	mT
Release Point South Pole	B _{RP_SOUTH}		0.1	1.8	4.0	mT
Operating Point North Pole	B _{OP NORTH}		-5.1	-2.8	-0.4	mT
Release Point North Pole	B _{RP_NORTH}		-4.0	-1.8	-0.1	mT
Hysteresis	B _{HYST}		0.2	1.0	1.8	mT
Active Pole			South & North			-
Magnetic Function			Direct Omnipolar Switch			-
Output Type				Push-Pull		
Sleep time ⁽²⁾	t _{sL}		32	45	55	ms
		V _{DD} = 1.8V	-	1.2	2.3	μA
Average Supply Current I _{DD AVG}	I _{DD_AVG}	V _{DD} = 3.3V	-	1.6	2.9	μA
		V _{DD} = 3.6V	-	1.7	3.0	μA

 $^{^1}$ Unless otherwise specified the typical values are defined at T_A = +25 $^\circ C$ and V_{DD} = 3.3V

² The total update rate for omnipolar devices is twice the defined sleep time

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

8.4. MLX92235RSE-AAB-101

Operating conditions V_{DD} = 3.3V, T_A = -40°C to 105°C (unless otherwise specified)

Parameter	Symbol	Condition	Min	Typ ⁽¹⁾	Max	Unit
Operating Point South Pole	B _{OP SOUTH}		0.8	3.0	5.0	mT
Release Point South Pole	B _{RP_SOUTH}		0.4	2.0	4.0	mT
Operating Point North Pole	B _{OP_NORTH}		-5.0	-3.0	-0.8	mT
Release Point North Pole	B _{RP_NORTH}		-4.0	-2.0	-0.4	mT
Hysteresis	B _{HYST}		0.2	1.0	1.8	mT
Active Pole				South & North		-
Magnetic Function			Dire	ect Omnipolar Swi	tch	-
Output Type				Open-Drain		-
Sleep time ⁽²⁾	t _{sL}		65	90	110	ms
		V _{DD} = 1.8V	-	0.9	1.9	μA
Average Supply Current	I _{DD_AVG}	V _{DD} = 3.3V	-	1.2	2.4	μA
		V _{DD} = 3.6V	-	1.3	2.5	μA

 1 Unless otherwise specified the typical values are defined at T_A = +25 $^\circ C$ and V_{DD} = 3.3V

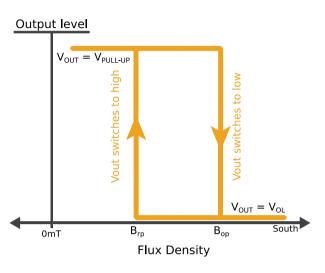
 $^{^{\}rm 2}$ The total update rate for omnipolar devices is twice the defined sleep time

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

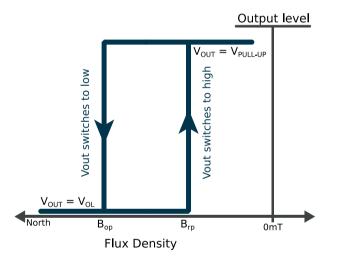
9. Detailed Description

9.1. Active magnetic pole definition

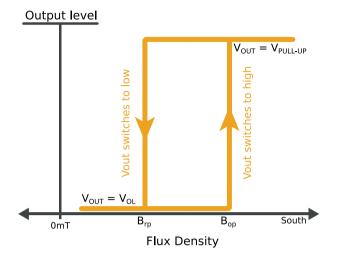
SE package – North pole active

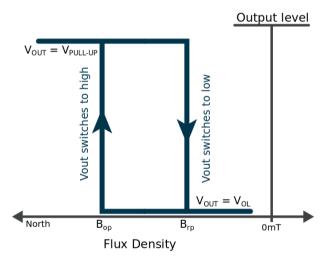

SE package – South pole active

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet



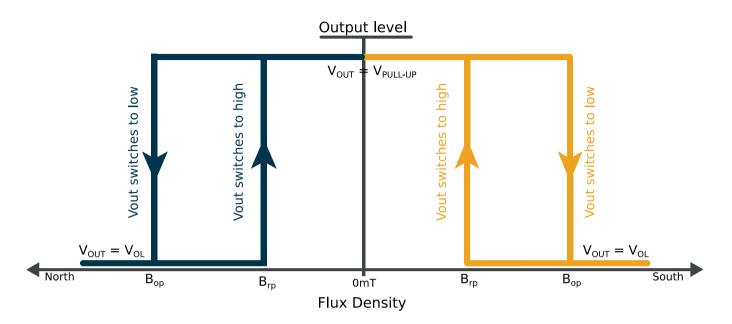
10. Magnetic Behavior


10.1. Unipolar Switch Sensor


Direct South Pole Active Switch

Direct North Pole Active Switch

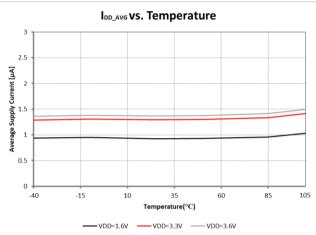
Inverted South Pole Active Switch

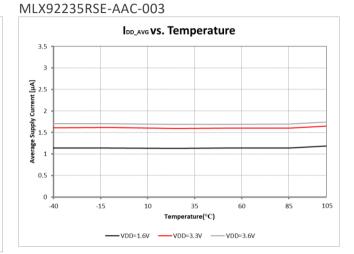


Inverted North Pole Active Switch

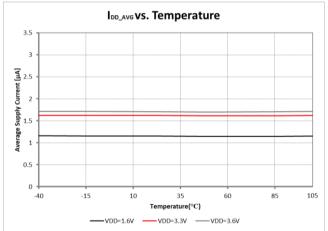
3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

10.2. Omnipolar Switch Sensor

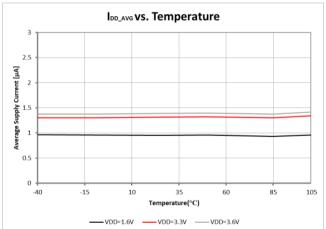

3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet



11. Performance graphs

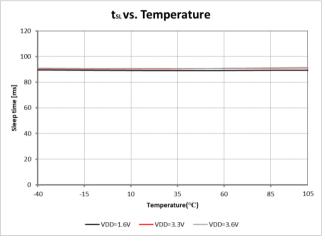

11.1. I_{DD_AVG} vs. Temperature

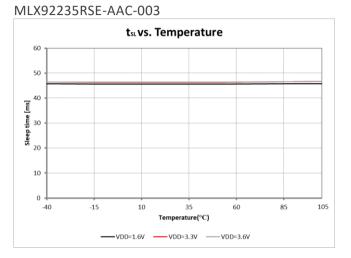
MLX92235RSE-AAC-001

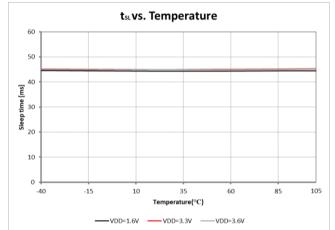


MLX92235RSE-AAC-101

MLX92235RSE-AAB-101



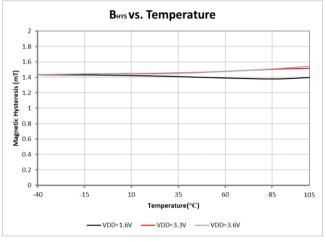

3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet


11.2. T_{SL} vs. Temperature

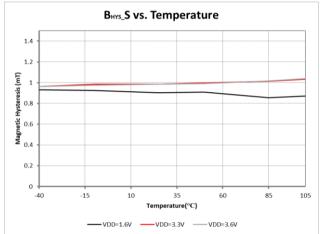
MLX92235RSE-AAC-001

MLX92235RSE-AAC-101

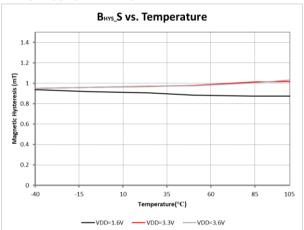
MLX92235RSE-AAB-101



3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet


11.3. B_{HYST} vs. Temperature

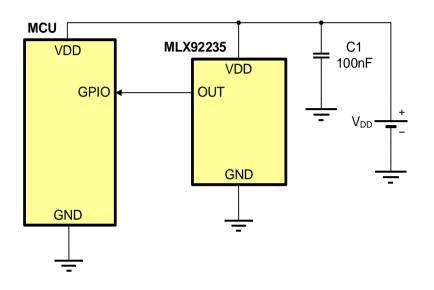
MLX92235RSE-AAC-001


BHYS **vs.** Temperature 1.4 1.2 (mT) 1 etic Hysteresis (r 9.0 8.0 8.0 ugen 0.4 0.2 0 105 -40 -15 35 60 85 10 Temperature(°C)

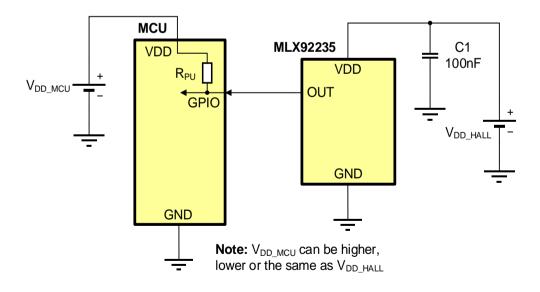
MLX92235RSE-AAC-101

MLX92235RSE-AAB-101

MLX92235RSE-AAC-003



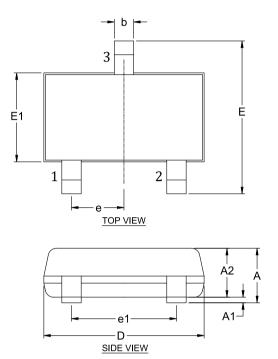
3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

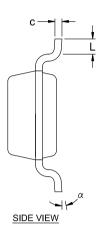


12. Typical application schematics

12.1. Push-Pull Output

12.2. Open Drain Output

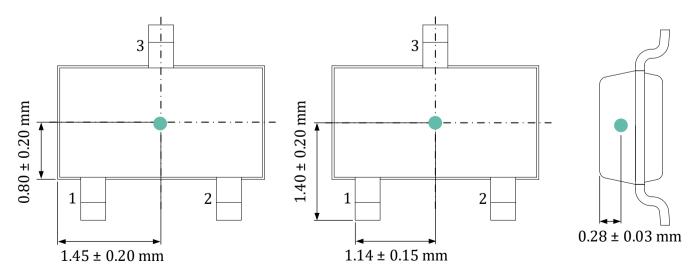

3-wire µPower Low Voltage Hall Effect Switch/Omnipolar Datasheet



13. Package information

13.1. TSOT-3L (SE package)

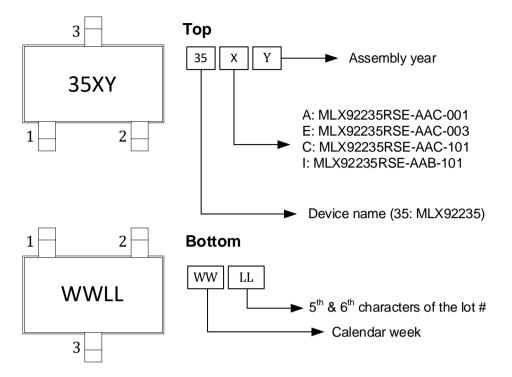
13.1.1. TSOT-3L – Package dimensions



∽≻⊻во∟	MINIMUM	MAXIMUM			
А		1.00			
A1	0.025	0.10			
A2	0.85	0.90			
D	2.80	3.00			
E	2.60	3.00			
E1	1.50	1.70			
L	0.30	0.50			
b	0.30	0.45			
с	0.10	0.20			
е	0.95 BSC				
e1	1.90	BSC			
α	0°	8°			

NOTE :

- 1. ALL DIMENSIONS IN MILLIMETERS (mm) UNLESS OTHERWISE STATED.
- 2. DIMENSION D DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS OF MAX 0.15 mm PER SIDE.
- 3. DIMENSION E DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS OF MAX 0.25 mm PER SIDE.
- 4. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION OF MAX 0.07 mm.
- 5. DIMENSION L IS THE LENGTH OF THE TERMINAL FOR SOLDERING TO A SUBTRATE.
- 6. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITH 0.076 mm SEATING PLANE.


13.1.2. TSOT-3L – Sensitive spot

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

13.1.3. TSOT-3L – Package marking/ Pin definition

Pin #	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Out	Open drain/ Push-Pull
3	GND	Ground	Ground pin

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

14. IC handling and assembly

14.1. Storage and handling of plastic encapsulated ICs

Plastic encapsulated ICs shall be stored and handled according to their MSL categorization level (specified in the packing label) as per J-STD-033.

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). The component assembly shall be handled in EPA (Electrostatic Protected Area) as per ANSI S20.20

For more information refer to Melexis *Guidelines for storage and handling of plastic encapsulated ICs*⁽¹⁾

14.2. Assembly of encapsulated ICs

For Surface Mounted Devices (SMD, as defined according to JEDEC norms), the only applicable soldering method is reflow.

For Through Hole Devices (THD), the applicable soldering methods are reflow, wave, selective wave and robot point-to-point. THD lead pre-forming (cutting and/or bending) is applicable under strict compliance with Melexis *Guidelines for lead forming of SIP Hall Sensors*⁽¹⁾.

Melexis products soldering on PCB should be conducted according to the requirements of IPC/JEDEC and J-STD-001. Solder quality acceptance should follow the requirements of IPC-A-610.

For PCB-less assembly refer to the relevant application notes ⁽¹⁾ or contact Melexis.

Electrical resistance welding or laser welding can be applied to Melexis products in THD and specific PCB-less packages following the *Guidelines for welding of PCB-less devices*⁽¹⁾.

Environmental protection of customer assembly with Melexis products for harsh media application, is applicable by means of coating, potting or overmolding considering restrictions listed in the relevant application notes ⁽¹⁾

For other specific process, contact Melexis via <u>www.melexis.com/technical-inquiry</u>

14.3. Environment and sustainability

Melexis is contributing to global environmental conservation by promoting non-hazardous solutions. For more information on our environmental policy and declarations (RoHS, REACH...) visit www.melexis.com/environmental-forms-and-declarations

¹ www.melexis.com/ic-handling-and-assembly

3-wire μPower Low Voltage Hall Effect Switch/Omnipolar Datasheet

15. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information. Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

- 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
- 2. civil firearms, including spare parts or ammunition for such arms;
- 3. defense related products, or other material for military use or for law enforcement;

4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis \bigcirc - No part of this document may be reproduced without the prior written consent of Melexis. (2024) IATF 16949 and ISO 14001 Certified

Happy to help you! www.melexis.com/contact