Datasheet

Features and Benefits

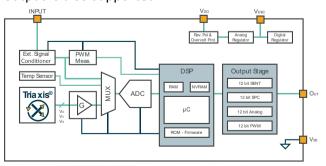
- Triaxis® Hall Technology
- On Chip Signal Processing for Robust Absolute Position Sensing
- Programmable Measurement Range
- Programmable Linear Transfer Characteristic (4 or 8 Multi-points or 16 or 32 Piece-Wise-Linear)
- Selectable (fast) SENT, PWM, SPC or Ratiometric Analog Output modes
- SAE J2716 APR2016 SENT
- ISO26262 CSIL READY

ASIL-C capable for (fast) SENT, PWM, SPC Output modes, and ASIL-B capable for analog output mode, Safety Element out of Context

- Enhanced serial data communication
- 48 bit ID Number option
- Single Die SOIC-8, DMP-4, SMP-3, and Dual Die (Full Redundant) - TSSOP-16 package RoHS Compliant
- Robustness against stray-field

Application Examples

- Absolute Rotary or Linear Position Sensor
- Pedal Position Sensor
- Throttle Position Sensor


- Ride Height Position Sensor
- Steering Wheel Position Sensor
- Float-Level Sensor
- Non-Contacting Potentiometer
- Small Angle Position Sensor
- Small Stroke Position Sensor

Description

The MLX90377 is a monolithic magnetic position sensor IC. It consists of a Triaxis® Hall magnetic front end, an analog to digital signal conditioner, a DSP for advanced signal processing and an output stage driver.

The MLX90377 is sensitive to the three components of the magnetic flux density applied to the IC (i.e. Bx, By and Bz). This allows the MLX90377 with the correct magnetic circuit to decode the absolute position of any moving magnet (e.g. rotary position from 0 to 360 Degrees or linear displacement, see Figure 2). It enables the design of non-contacting position sensors that are frequently required for both automotive and industrial applications.

The MLX90377 provides 4 output modes. Firstly, the IC supports (fast) SENT and SPC frames encoded according to a Secure Sensor format. The output delivers enhanced serial messages providing error codes, and user-defined values. Through programming, the MLX90377 can also be configured to output a PWM (Pulse Width Modulated) signal. Finally, analog ratiometric output is also supported.

Ordering Information

Product	Temper- ature	Package	Option Code	Packing Form	Definition
MLX90377	G	DC	ADB-300	RE	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	DC	ADB-310	RE	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	DC	ADB-330	RE	Standard / Legacy Mode, SENT output
MLX90377	G	DC	ADB-380	RE	Standard / Legacy Mode, SPC output
MLX90377	G	GO	ADB-210	RE	Linear Stray-Field Immune Mode, Analog/PWM output, High Speed Mode
MLX90377	G	GO	ADB-230	RE	Linear Stray-Field Immune Mode, SENT output
MLX90377	G	GO	ADB-280	RE	Linear Stray-Field Immune Mode, SPC output
MLX90377	G	GO	ADB-300	RE	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	GO	ADB-310	RE	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	GO	ADB-330	RE	Standard / Legacy Mode, SENT output
MLX90377	G	GO	ADB-380	RE	Standard / Legacy Mode, SPC output
MLX90377	G	GO	ADB-510	RE	Rotary Stray-Field Immune Mode, Analog/PWM output, High Speed Mode
MLX90377	G	GO	ADB-530	RE	Rotary Stray-Field Immune Mode (High Field variant), SENT output
MLX90377	G	VS	ADB-300	RE/RX	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	VS	ADB-303	RE/RX	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	VS	ADB-308	RE/RX	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	VS	ADB-310	RE/RX	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	VS	ADB-313	RE/RX	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	VS	ADB-318	RE/RX	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	VS	ADB-330	RE/RX	Standard / Legacy Mode, SENT output

Datasheet

Product	Temper- ature	Package	Option Code	Packing Form	Definition
MLX90377	G	VS	ADB-333	RE/RX	Standard / Legacy Mode, SENT output
MLX90377	G	VS	ADB-338	RE/RX	Standard / Legacy Mode, SENT output
MLX90377	G	VE	ADB-110	RE/RX	Rotary Stray-Field Immune Mode (Low Field variant), Analog/PWM output, High Speed Mode
MLX90377	G	VE	ADB-210	RE/RX	Linear Stray-Field Immune Mode, Analog/PWM output, High Speed Mode
MLX90377	G	VE	ADB-230	RE/RX	Linear Stray-Field Immune Mode, SENT output
MLX90377	G	VE	ADB-300	RE/RX	Standard/Legacy Mode, Analog/PWM output, Low Power Mode
MLX90377	G	VE	ADB-310	RE/RX	Standard/Legacy Mode, Analog/PWM output, High Speed Mode
MLX90377	G	VE	ADB-330	RE/RX	Standard / Legacy Mode, SENT output
MLX90377	G	VE	ADB-510	RE/RX	Rotary Stray-Field Immune Mode (High Field variant), Analog/PWM output, High Speed Mode

Table 1 - Ordering Codes

Temperature Code:	G: -40°C to 160°C					
Package Code:	DC: SOIC-8 package (see 19.1)					
	GO: TSSOP-16 package (see 19.2)					
	VS: DMP-4 package (PCB-less dual mold, see 19.3)					
	VE: SMP-3 package (PCB-less single mold, see 19.4)					
Option Code - Chip	ADB-123: Chip Revision					
revision	ADB : Standard revision					
Option Code - Application	ADB-123: 1-Application - Magnetic configuration					
	1: Angular Rotary Strayfield Immune - Low field Variant					
	2: Linear position Strayfield Immune					
	3: Legacy / Angular Rotary / Linear position					
	5: Angular Rotary Strayfield Immune - High field Variant					
Option Code - SW	ADB-123: 2-SW configuration: output mode, protocol					
configuration: output	0: Analog/PWM output mode, low power mode					
mode, protocol	1: Analog/PWM output mode, high speed mode					
	 3. SENT output mode, 3µs tick time 					
	 8: SPC output mode, 1.5μs tick time 					
	Important: Product must be ordered by the option code corresponding to the desired output protocol. The output protocols are not interchangeable by reprograming at the end-user.					
Option Code - DMP-4 Trim	ADB-123: 3-DMP-4 Trim & Form configuration					
& Form configuration	O: Standard straight leads. See section 19.3.1					
0	3: Trim and Form STD2 2.54. See section 19.3.2					
	 8: Trim and Form STD4 2.54. See section 19.3.3 					
Packing Form:						
Packing Form:	-RE: Tape & Reel					
	• VS:2500 pcs/reel					
	• VE:2500 pcs/reel					
	DC:3000 pcs/reel					
	GO:4500 pcs/reel BY: Tang & Pool, similar to PE with parts face down (VS and VE package)					
	-RX: Tape & Reel, similar to RE with parts face-down (VS and VE package)					
Ordering Example:	MLX90377GDC-ADB-300-RE					
	For a legacy version in SOIC-8 package, low-power analog output, delivered in Reel of 3000pcs.					

Table 2 - Ordering Codes Information

Datasheet

Contents

Features and Benefits	1
Application Examples	1
Description	1
Ordering Information	2
1. Functional Diagram and Application Modes	7
2. Glossary of Terms	8
3. Pin Definitions and Descriptions	9
3.1. Pin Definition for SOIC-8 package	9
3.2. Pin Definition for TSSOP-16 Dual-Die package	10
3.3. Pin Definition for DMP-4 package	10
3.4. Pin Definition for SMP-3 package	11
4. Absolute Maximum Ratings	12
5. Isolation Specification	12
6. General Electrical Specifications	13
7. Timing Specifications	15
7.1. General Timing Specifications	15
7.2. Timing Definitions	15
7.3. Analog output timing specifications	17
7.4. PWM output timing specifications	18
7.5. SENT output timing specifications	19
7.6. SPC Timing Specifications	21
8. Magnetic Field Specifications	23
8.1. Rotary Stray-field Immune Mode – Low Field Variant (-1xx code)	23
8.2. Linear Stray-field Immune Mode (-2xx code)	24
8.3. Standard/Legacy Mode (-3xx code)	25
8.4. Rotary Stray-field Immune Mode - High Field Variant (-5xx code)	26
9. Accuracy Specifications	27
9.1. Definitions	27
9.2. Rotary Stray-field Immune Mode – Low Field Variant (-1xx code)	28
9.3. Linear Stray-field Immune Mode (-2xx Code)	29
9.4. Standard/Legacy Mode (-3xx Code)	30
9.5. Rotary Stray-field Immune Mode – High Field Variant (-5xx Code)	31

10. Memory Specifications	31
11. Output Accuracy and Protocol	32
11.1. Analog Output	32
11.2. PWM (Pulse Width Modulation) Output	32
11.3. SENT (Single Edge Nibble Transmission) Output	33
11.4. SPC (Short PWM Code) Output	41
12. End User Programmable Items	50
13. End User Identification Items	58
14. Description of End-User Programmable Items	59
14.1. Output Modes	59
14.2. Output Transfer Characteristic	62
14.3. Sensor Front-End	70
14.4. Filtering	71
14.5. Programmable Diagnostics Settings	73
15. Functional Safety	75
15.1. Safety Manual	75
15.2. Safety Mechanisms	75
15.3. Fault Handling Time Interval	79
16. Recommended Application Diagrams	81
16.1. Wiring with the MLX90377 in SOIC-8 Package	81
16.2. Wiring with the MLX90377 in TSSOP-16 Package	82
16.3. Wiring with the MLX90377 in DMP-4 Package (built-in capacitors)	83
16.4. Wiring with the MLX90377 in SMP-3 Package (built-in capacitors)	84
17. Standard Information Regarding Manufacturability of Melexis Products with Soldering Processes	
18. ESD Precautions	85
19. Package Information	86
19.1. SOIC-8 Package	86
19.2. TSSOP-16 Package	89
19.3. DMP-4 - Package	92
19.4. SMP-3 - Package	97
19.5. Packages Thermal Performances	101
20. Contact	102
21. Disclaimer	102

1. Functional Diagram and Application Modes

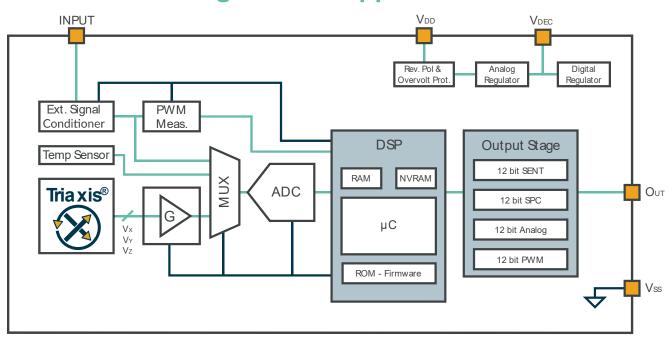


Figure 1 - MLX90377 Block diagram

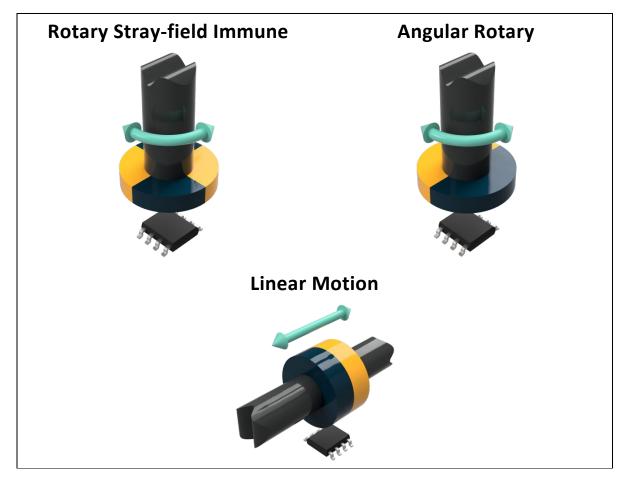


Figure 2 - Application Modes

2. Glossary of Terms

Name	Description		
ADC	Analog-to-Digital Converter		
AoU	Assumption of Use		
ASP	Analog Signal Processing		
AWD	Absolute WatchDog		
CPU	Central Processing Unit		
CRC	Cyclic Redundancy Check		
DC	Duty Cycle of the output signal i.e. $T_{ON} / (T_{ON} + T_{OFF})$		
DMP	Dual Mould Package		
DP	Discontinuity Point		
DSP	Digital Signal Processing		
DTI	Diagnostic Test Interval		
ECC	Error Correcting Code		
EMA	Exponential Moving Average		
EMC	Electro-Magnetic Compatibility		
EoL	End of Line		
FIR	Finite Impulse Response		
FHTI	Fault Handling Time Interval		
Gauss (G)	Alternative unit for the magnetic flux density (10G = 1mT)		
HW	Hardware		
IMC	Integrated Magnetic Concentrator		
INL/DNL	Integral Non-Linearity / Differential Non-Linearity		
IWD	Intelligent WatchDog		
LNR	LiNeaRization		
LSB/MSB	Least Significant Bit / Most Significant Bit		
NC	Not Connected		
NVRAM	Non Volatile RAM		
POR	Power On Reset		
PSF	Product Specific Functions		
PWL	Piecewise Linear		
PWM	Pulse Width Modulation		

Name	Description				
RAM	Random Access Memory				
ROM	Read-Only Memory				
SPC	Short PWM Code				
SCN	Status & Communication Nibble				
SEooC	Safety Element out of Context				
тс	Temperature Coefficient (in ppm/°C)				
Tesla (T)	SI derived unit for the magnetic flux density (Vs/m2)				

Table 3 - Glossary of Terms

3. Pin Definitions and Descriptions

3.1. Pin Definition for SOIC-8 package

Pin #	Name	Description		
1	V_{DD}	Supply		
2	Input	For Melexis test or External Measurement		
3	Test	For Melexis test		
4	N.C.	Not connected		
5	OUT	Output		
6	N.C.	Not connected		
7	V_{DEC}	Decoupling pin		
8	V_{SS}	Ground		

Table 4 - SOIC-8 Pin definitions and descriptions

For optimal EMC behavior, it is recommended to connect the unused pins (N.C. and Test) to the Ground.

3.2. Pin Definition for TSSOP-16 Dual-Die package

Pin #	Name	Description		
1	V_{DEC1}	Decoupling pin die1		
2	V_{SS1}	Ground die1		
3	$V_{\mathtt{DD1}}$	Supply die1		
4	Input₁	For Melexis test or External Measurement		
5	Test ₂	For Melexis test		
6	OUT ₂	Output die2		
7	N.C.	Not connected		
8	N.C.	Not connected		
9	V_{DEC2}	Decoupling pin die2		
10	V_{SS2}	Ground die2		
11	V_{DD2}	Supply die2		
12	Input ₂	For Melexis test or External Measurement		
13	Test ₁	For Melexis test		
14	N.C.	Not connected		
15	OUT_1	Output die1		
16	N.C.	Not connected		

Table 5 - TSSOP-16 Pin definitions and descriptions

For optimal EMC behavior, it is recommended to connect the unused pins (N.C. and Test) to the Ground.

3.3. Pin Definition for DMP-4 package

DMP-4 package offers a pin to pin compatibility with the previous generation of Triaxis® products.

Pin #	Name	Description
1	V_{SS}	Ground
2	V_{DD}	Supply
3	OUT	Output
4	V_{SS}	Ground

Table 6 - DMP-4 Pin definitions and descriptions

3.4. Pin Definition for SMP-3 package

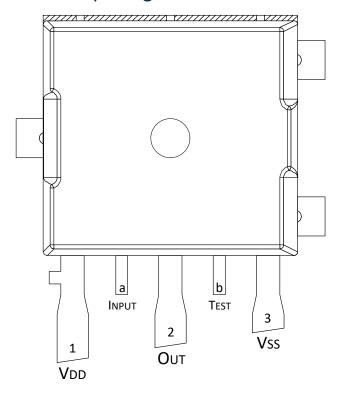


Figure 3 – Pins definition for SMP-3 Package

Pin #	Name	Description		
1	VDD	Supply		
2	Оит	Output		
3	Vss	Ground		
а	INPUT	Test		
b	Test	Test		

Table 7 - SMP-3 Pins definition and description

4. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Supply Voltage ⁽¹⁾	V_{DD}			28 37	V	< 48h < 60s
Reverse Voltage Protection ⁽¹⁾	$V_{DD ext{-rev}}$	-14 -18			V	< 48h < 1h
Positive Output Voltage ⁽¹⁾	V_{OUT}			28	V	< 48h
Reverse Output Voltage ⁽¹⁾	$V_{OUT\text{-rev}}$	-14 -18			V	< 48h < 1h
Internal Voltage	V_{DEC}			3.6	٧	
	$V_{DEC\text{-rev}}$	-0.3			٧	
Positive Input pin Voltage	V_{Input}			6	٧	
Reverse Input pin Voltage	$V_{Input-rev}$	-3			V	
Operating Temperature	T_{AMB}	-40		+160	°C	
Junction Temperature	TJ			+175	°C	
Storage Temperature	T_{ST}	-55		+170	°C	
Magnetic Flux Density	B_{max}	-1		1	Т	

Table 8 - Absolute maximum ratings

Exceeding any of the absolute maximum ratings may cause permanent damage.

Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

The values in Table 8 are valid for a single die, and will degrade when simultaneously applied to multiple dice in the same package.

5. Isolation Specification

Only valid for the TSSOP-16 package (code GO, i.e. dual die version).

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Isolation Resistance	R _{isol}	4	-	-	МΩ	Between dice, measured between V _{SS1} and V _{SS2} with +/-20V bias

Table 9 - Isolation specification

¹ Valid for full operating temperature range.

6. General Electrical Specifications

General electrical specifications are valid for temperature range [-40;160] °C and supply voltage range [4.5;5.5] V unless otherwise noted.

Electrical Parameter	Symbol	Min	Тур	Max	Unit	Condition
Supply Voltage	V_{DD}	4.5	5	5.5	V	Powered by regulated supply
Supply Voltage	V_{DD}	6	12	18	V	Powered by vehicle battery (2)
Supply Current for Legacy / Angular Rotary	I _{DD}	8 10 8	9 11 9	11 13.5 11.5	mA	-30x code -31x, -38x code -33x code
Supply Current for Strayfield Immune	I _{DD}	12 9	13.5 11.5	15 13	mA	-21x, -28x, -51x code -23x, -53x code
Start-up Level (rising)	$V_{DDstartH}$	3.95	4.1	4.25	V	
Start-up Hysteresis	$V_{DDstartHyst}$	-	200	-	mV	
PTC Entry Level	$V_{PROV0}^{(3)}$	6.3	6.55	6.8	V	Powered by regulated supply
(rising)	V_{PROV1}	21.5	23	24.5	V	Powered by vehicle battery (2)
PTC Entry Level Hysteresis	V PROV0Hyst	400	500	600	mV	
Output Short Circuit Current	louTshort	-35 10		-10 35	mA	Vout = 0 V Vout = 5 V or 18V
		5	10		kΩ	Analog pull-up/pull-down
		5		100	kΩ	PWM push-pull, pull-up to 5V, PWM push-pull, pull-down to 0V
Output Load	R_{L}	10	-	55	kΩ	SENT push-pull, pull-up (4)
		3	-	55	kΩ	SPC push-pull and improved emission modes ⁽⁴⁾
		1	-	100	kΩ	Open drain pull-up/pull-down (4)
Digital open drain	$V_{satLoOd}$	0		10	$%V_{ext}$	Pull-up to any external voltage $V_{\text{ext}} \le 18V$, $I_L \le 3.4 \text{mA}$
output level	$V_{satHiOd}$	90		100	$%V_{\text{ext}}$	Pull-down to GND with any supply voltage $V_{DD} \le 18V$, $I_L \le 3.4mA$

² The battery mode is exclusively for the PWM protocol

³ Programming through Connector (PTC) requires raising supply voltage above V_{prov0} or V_{prov1} . This is customer configurable by setting a bit in the NVRAM

⁴ Output resistance should be selected together with the output capacitive load to correspondingly match the application, i.e. tick time, SPC ID, to allow appropriate time window for the trigger pulse reception. More details see sections 11.3.5 and 11.4.3.

Electrical Parameter	Symbol	Min	Тур	Max	Unit	Condition
Digital open drain	$I_{leakpuOd}$			400	μΑ	$V_{ext} \le 18V$, $4.5V \le VDD \le 5.5V$, with a pull-up resistor
output leakage ⁽⁵⁾				100	μΑ	$V_{vdd} = V_{ext}$, with a pull-up resistor
	I _{leakpdOd}			150	μΑ	with a pull-down resistor
Digital output Ron	R_{on}	27	50	130	Ω	Push-pull mode
Analog Saturation	V_{satA_lo}		0.5 ⁽⁶⁾ 3.3 ⁽⁶⁾	1.2 ⁽⁷⁾ 7.4 ⁽⁷⁾	%VDD	Pull-up load $R_L \ge 10~k\Omega$ to 5 V Pull-up load $R_L \ge 5~k\Omega$ to 18 V
Output Level	V_{satA_hi}	97 ⁽⁷⁾ 95 ⁽⁷⁾	99 ⁽⁶⁾ 98 ⁽⁶⁾		%VDD	Pull-down load $R_L \geq 10~k\Omega$ Pull-down load $R_L \geq 5~k\Omega$
Digital Output Level	V_{satD_lopp}			0.2 ⁽⁷⁾ 0.5 ⁽⁷⁾	V	Pull-up load $R_L \ge 10 \ k\Omega$ Pull-up load $10 \ k\Omega > R_L \ge 5 \ k\Omega$
	V_{satD_hipp}	VDD -0.2 ⁽⁷⁾ VDD -0.5 ⁽⁷⁾			V	Pull-down load $R_L \geq 10~k\Omega$ Pull-down load 10 $k\Omega > R_L \geq 5~k\Omega$
Active Diagnostic	Diag_lo		0.5 ⁽⁶⁾ 3.3 ⁽⁶⁾	1.2 ⁽⁷⁾ 7.4 ⁽⁷⁾	%VDD	Pull-up load $R_L \geq$ 10 $k\Omega$ to 5 V Pull-up load $R_L \geq$ 5 $k\Omega$ to 18 V
Output Level	Diag_hi	97 ⁽⁷⁾ 95 ⁽⁷⁾	99 ⁽⁶⁾ 98 ⁽⁶⁾		%VDD	Pull-down load $R_L \geq 10~k\Omega$ Pull-down load $R_L \geq 5~k\Omega$
Passive Diagnostic Output Level for	BVssPD		2.5 1	4 1.6	%VDD	Pull-down load $R_L \le 25 \text{ k}\Omega$ Pull-down load $R_L \le 10 \text{ k}\Omega$
Broken Vss (Broken- Wire Detection) ⁽⁸⁾	BVssPU	99.5	100		%VDD	Pull-up load $R_L \ge 5 \ k\Omega$
Passive Diagnostic	BVDDPD		0	0.5	%VDD	Pull-down load $R_L \geq 5~k\Omega$
Output Level for Broken VDD (Broken- Wire Detection) ⁽⁸⁾	VDD (Broken-BVDDPU 92.5		97.5 99		%VDD	Pull-up load $R_L \le 25 \text{ k}\Omega$ Pull-up load $R_L \le 10 \text{ k}\Omega$
Leakage current in fail-safe (HiZ) state (9)	Ileak_HiZ		10(10)	20 ⁽¹⁰⁾	μΑ	Pull-up at output ⁽¹¹⁾

Table 10 – Electrical Specifications

⁵ The digital output level is thereby defined by the external voltage and pull-up or pull-down resistor.

for the digital output level is thereby defined by the external voltage and pair up of pair down resistor.

for the argital output level is thereby defined by the external voltage and pair up of pair up of pair down resistor.

for the argital output of supply voltage with typical process parameters

for the argital output of supply voltage with typical process parameters

for the output of one die is connected with PU and the output of the other one is connected with PD.

for the case of coon-drain mode, see the parameters becaused believed.

⁹ In the case of open-drain mode, see the parameters l_{leakpuOd}/l_{leakpdOd}.
¹⁰ As the leakage current significantly increases at high temperature, the typical value is at 35Deg.C, and the maximum value is at 160Deg.C.

The worst case scenario for the leakage occurs when the output is pulled up. The leakage current will be \sim 30 times smaller if the output is pulled down.

7. Timing Specifications

Timing specifications are valid for temperature range [-40; 160] °C and supply voltage range [4.5; 5.5] V unless otherwise noted.

7.1. General Timing Specifications

Parameter	Symbol	Min.	Тур	Max.	Unit	Condition
Main Clock Frequency (12)	F _{CK}	11.4 22.8	12 24	12.6 25.2	MHz	-23x, -30x, -33x, -53x code -21x, -28x, -31x, -38x, -51x code
Main Clock initial tolerances at room temperature	$\Delta F_{CK,0}$	11.75 23.5	12 24	12.25 24.5	MHz	-23x, -30x, -33x, -53x code -21x, -28x, -31x, -38x, -51x code
Main Clock Frequency Thermal Drift	$\Delta F_{CK,T}$	-2.5	-	2.5	%F _{ck}	Relative to 35°C
Main Clock Frequency Total Drift	ΔF _{CK, ТОТ}	-3.5	-	3.5	%F _{ck}	Relative tolerances, including thermal and lifetime drift, after factory trimming at Melexis
1MHz Clock Frequency	F _{1M}		1		MHz	

Table 11 - General Timing Specifications

7.2. Timing Definitions

7.2.1. Startup Time

In analog mode, the startup time is the time between the power on cycle and the time the first valid angle transmitted on the output. During startup, the sensor output is in High-Z state, and the driver is only enabled when the sensor is able to transmit a valid output.

In SPC mode, the startup time is the time when the device is able to receive the 1st trigger pulse with valid angle information. Prior to it, there is a programmable SPC-SCN_INIT parameter (see Table 49 in chapter 12) to report an error in the status and communication nibble (SCN, see section 11.4.5.3).

In SENT mode, the startup time consists of two values. The first one, T_{init} , is the time needed for the circuit to be ready to start acquiring an angle. In SENT mode, at that time, the IC starts transmitting initialisation frames. The second value, T_{stup} , is the time when the first valid angle is transmitted.

In PWM mode, startup is defined by three values, $T_{stup[1..3]}$. The first value is reached when the output is ready and starts to drive a voltage. The second value T_2 is the start of the first value angle transmission and the third one T_3 the moment the first angle has been transmitted.

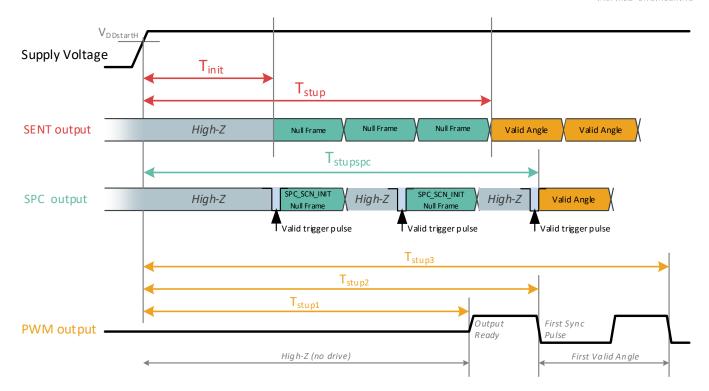


Figure 4 - Startup Time Definition

7.2.2. Latency (average)

Latency is the average lag between the movement of the detected object (magnet) and the response of the sensor output, as shown in Figure 5, where theta_ECU(t) is sampled as the beginning of the synchronization pulse. This value is representative of the time constant of the system for regulation calculations.

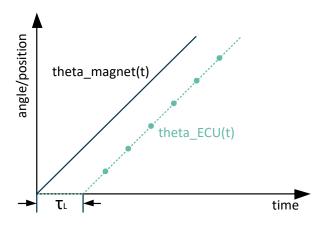


Figure 5 - Definition of Latency

7.2.3. Step Response (worst case)

The step response is a suitable metric for the "delay" of the sensor in case of an abrupt step in the magnetic change, considering 100% settling time without any DSP filter. Full settling is typically achieved in just two

steps. The sensor is asynchronous with the magnetic step change: the 100% settling time will fall in a time window; worst case is illustrated in the figure below.

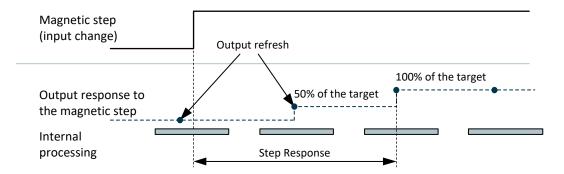


Figure 6 - Step Response Definition

7.3. Analog output timing specifications

For the analog output configurations, specifications are valid for the operational temperature range, and the supply voltage defined in section 6.

7.3.1. High Speed Mode (-21x,-31x,-51x code)

For the High Speed Mode, the timing specifications are listed in Table 12.

To the fight speed wode, the timing specifications are listed in Table 12.										
Parameter	Symbol	Min	Тур	Max	Unit	Condition				
Output refresh period	τ_{R}	190	200	210	μs					
Latency	τ_{L}			140	μs	no external load				
Step response	$\tau_{\scriptscriptstyle S}$			380	μs	no external load				
Start-up time	$ au_{SU}$			3.2	ms					
Slew Rate	SR			120 200	V/ms	capacitive load at output is 100nF capacitive load at output is 10nF				
Analog Diagnostics Cycle	DTI _{ANA}			7.2	ms	see Table 73, section 15.3				
Digital Diagnostics Cycle	DTI_{DIG}			6.1	ms	see Table 73, section 15.3				
Safe startup Time(13)(14)				13.3	ms					

Table 12 - Analog General Timing Specifications for High Speed Mode

¹³ Fully programmable depending on the power/magnetic/output mode.

¹⁴ Time between reset due to digital fault to first valid data transmission. Min. value defined by OUT_DIAG_HIZ_TIME (see Table 42 in chapter 12 for details).

7.3.2. Low Power Mode (-30x code)

For the Standard/Legacy Mode, the timing specifications are listed in Table 13:

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Output refresh period	τ_{R}	380	400	420	μs	
Latency	τ_{L}			300	μs	no external load
Step response	$\tau_{\scriptscriptstyle S}$			680	μs	no external load
Start-up time	$ au_{SU}$		4	4.2	ms	
Slew Rate	SR			120 200	V/ms	capacitive load at output is 100nF capacitive load at output is 10nF
Analog Diagnostics Cycle	DTI _{ANA}			15	ms	see Table 73, section 15.3
Digital Diagnostics Cycle	DTI_{DIG}			9.8	ms	see Table 73, section 15.3
Safe startup Time(13)(14)				21.7	ms	

Table 13 - Analog General Timing Specifications for the Standard/Legacy Low Power Mode

7.4. PWM output timing specifications

The factory calibrated parts with order code –x0x and –x1x default to ratiometric analog output, the end user must reprogram the part to use the PWM output. Details can be found in Table 39. The Table 14 below shows the timing specifications for PWM output.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Internal angle measurement period (-x0x code)	$ au_{R}$	380	400	420	μs	
Internal angle measurement period (-x1x code)	τ_{R}	190	200	210	μs	
PWM Frequency	F_{PWM}	100		2000	Hz	Details see section 14.1.4
PWM Frequency Initial Tolerances	$\Delta F_{PWM,0}$	-2		2	%F _{PWM}	T=35°C, can be trimmed at EOL
PWM Frequency Thermal Drift	$\Delta F_{\text{PWM,T}}$	-2.5		2.5	$%F_{PWM}$	
PWM Frequency Drift	ΔF_{PWM}	-5.0		5.0	%F _{PWM}	Over temperature and lifetime
PWM startup Time (up to output ready) (15)	T_{stup1}		3.2		ms	
PWM startup Time (up to first sync. Edge) (15)	T _{stup2}		4.2		ms	T _{stup1} + T _{PWM} , F _{PWM} =1kHz

¹⁵ Typical value specified according to the typical PWM frequency. Max. value can be obtained by scaling with the PWM frequency drift accordingly.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
PWM startup Time (up to first data received) (15)	T_{stup3}		5.2		ms	$T_{stup1} + 2* T_{PWM}, F_{PWM} = 1kHz^{(16)}$
Rise Time PWM push-pull mode ⁽¹⁷⁾	T_{rise_pp}		3.1	5.0	μs	VDD in the range of [4.5V, 5.5V]
Fall Time PWM push-pull mode	T_{fall_pp}		2.6	4.5	μs	VDD in the range of [4.5V, 5.5V]
Fall Time PWM NMOS open- drain mode (17) (18)	T_{fall_od}			200	μs	VDD=4.5V, $V_{pull-up}$ = 18V, R_L = $10k\Omega^{(19)}$

Table 14 - PWM timing specifications with order code

7.5. SENT output timing specifications

The general SENT timing specifications are listed in Table 15.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Tick time ⁽²⁰⁾			3	6	μs	3μs = Normal SENT (default) 6μs = Slow SENT
SENT edge rise Time	T_{rise}		12.5	18	μs	between 1.1V and 3.8V
SENT edge fall Time	T_{fall}		5.3	6.5	μs	for 3µs tick time
Slow Message cycle length (3µs tick time)			791 475		ms	Extended sequence (40 frames) Short sequence (24 frames)

Table 15 - SENT General Timing Specifications

7.5.1. Standard/Legacy Mode (-x3x code)

7.5.1.1. Continuous Synchronous Acquisition Mode

For the SENT output protocol in the Standard/Legacy Mode, MLX90377 with the default factory calibration operates with constant SENT frame length (SENT with pause), where a constant latency and step response time is guaranteed. The length of the SENT frame is defined by the parameter T_FRAME in number of ticks (see Table 49). The sensor is configured in continuous synchronous timing mode, acquires angles based on the output frequency, and the sensor output has a fixed frame frequency.

The detailed default setting of the SENT protocol for order code -33x is as follows:

¹⁶ First frame transmitted has no synchronization edge; Therefore the second frame transmitted is the first complete one.

¹⁷ 10nF capacitive load, calculated between 10%-90% voltage level.

¹⁸ Rise time in PWM NMOS open-drain mode is not specified as it depends on external components and the pull-up voltage.

 $^{^{19}}$ $V_{pull-up}$ stands for the external pull up voltage. The worst-case scenario for this parameter is in the NMOS open-drain mode, where there is the maximal voltage difference between $V_{pull-up}$ and VDD. Furthermore, this parameter highly depends on the $V_{pull-up}$, the capacitive and resistive load at the output. The rise/fall time should be adjusted accordingly, with a different $V_{pull-up}$ value and RC time constant resulting from the output load.

²⁰ The device also supports SENT formats with other tick time, see Table 31.

Datasheet

Protocol: SENT with pause

Tick time: 3μs/tickSENT format: A.3 (H.4)

Number of conversions per SENT frame: 2

ADC clock frequency: 3MHzDSP linearization: 16 points

The corresponding timing specifications are listed in Table 16.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SENT frame tick count	N_{Tframe}	320 (21)(22)			ticks	
Output refresh period	τ_{R}		0.96		ms	
SENT startup time	T_{stup}			6.4	ms	Until first valid angle received
				1.7		Filter = 0 (no filter) (23)
Average Latency	T_{latcy}			1.9	ms	Filter = 1 (FIR11), default setting
				2.5		Filter = 2 (FIR1111)
Stan Dasnansa (warst			2.24	3.0		Filter = 0 (no filter) (23)
Step Response (worst case)	T_{wcStep}		2.71	3.5	ms	Filter = 1 (FIR11), default setting
33331			3.62	4.4		Filter = 2 (FIR1111)
Analog Diagnostics Cycle	DTI _{ANA}			10.4	ms	see Table 73, section 15.3
Digital Diagnostics Cycle	DTI_{DIG}			8.5	ms	see Table 73, section 15.3
Safe startup Time(13)(14)				12.1	ms	

Table 16 - Synchronous SENT Mode Timing Specifications

7.5.1.2. Continuous Asynchronous Acquisition Mode

Optionally to the default factory setting of the -x3x code, the MLX90377 can be configured to operate with variable SENT frame length (SENT without pause), where latency and step response is dependent on the transmitted data. The length of the SENT frame is defined by the data content. The sensor is configured in the continuous asynchronous acquisition mode and periodically acquires a magnetic measurement asynchronously to the SENT transmission.

When configured in the continuous asynchronous acquisition mode, the detailed default setting of the SENT protocol for order code -x3x is as follows:

Protocol: SENT without pause

Tick time: 3μs/tick
 SENT format: A.3 (H.4)
 ADC clock frequency: 3MHz
 DSP linearization: 16 points

²¹ Defines the typical Output refresh period (SENT Frame Period).

 $^{^{22}}$ If the sensor is configured from the default factory setting of -33x code to have 1 conversion per SENT frame, the minimum tick count is 282.

²³ See section 14.4 for details concerning Filter parameter. It is an option to improve the speed, but will degrade noise performance (see section 9.4) by a factor of 1.4.

The corresponding timing specifications are listed in Table 17.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Internal angle measurement period	$ au_R$	475	500	525	μs	Asynchronously to the output protocol
SENT startup time	T_{stup}			5.9	ms	Until first valid angle received
Average Latency	T_{latcy}			1.8 2 2.5	ms	Filter = 0 (no filter) (23) Filter = 1 (FIR11), default setting Filter = 2 (FIR1111)
Step Response (worst case)	T_{wcStep}			2.2 2.8 3.7	ms	Filter = 0 (no filter) (23) Filter = 1 (FIR11), default setting Filter = 2 (FIR1111)
Analog Diagnostics Cycle	DTI_{ANA}			11	ms	see Table 73, section 15.3
Digital Diagnostics Cycle	DTI_{DIG}			8.8	ms	see Table 73, section 15.3
Safe startup Time ^{(13) (14)}				18	ms	

Table 17 - Synchronous SENT Mode Timing Specifications

7.6. SPC Timing Specifications

In SPC mode, the MLX90377 starts data acquisition once the trigger pulse has been received, regardless of the configured mode. It will send the acquired data in the same SENT frame. This feature is available for any tick time greater than or equal to $1.5\mu s$. Please check the section 11.4 for more details on the configuration options.

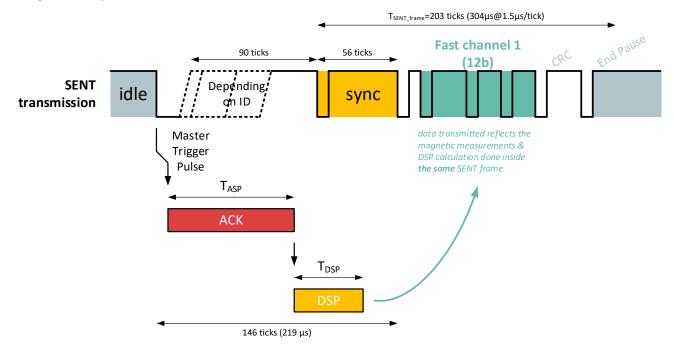


Figure 7 – SPC timing illustration in 1.5μs tick time mode and H.2 format

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Time between trigger received & acquisition started	T_{tr2acq}		10		μs	Tick: 1.5 μs SPC_RX_FILT_TIME (24): 6 SPC_TRIG_TH: 0
Startup time	$T_{stupspc}$		3.9		ms	
Latency	T_{latcy}		450		μs	
Step Response (25)	T_{wcStep}		1		ms	
Jitter between the acquisition	J_{acq}			5	μs	
Inter-die synchronicity (26)		8.45	9.08	9.71	μs	
Analog Diagnostics Cycle (27)	DTI _{ANA}			9	SPC triggers	
Digital Diagnostics Cycle (27)	DTI_{DIG}			9	SPC triggers	

Table 18 - SPC Mode Timing Specifications

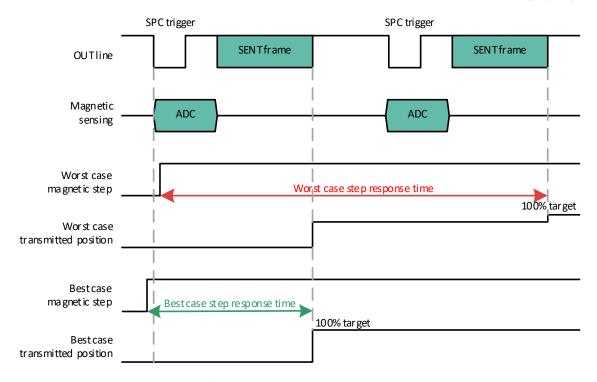


Figure 8 – Illustration of the best and worst case step response in SPC mode

²⁴ SPC_RX_FILT_TIME is the parameter for the SPC trigger pulse filtering. Its unit is tick time. It must be aligned with the longest NIBBLE low time on the bus, in order to separate SENT pulses from SPC trigger pulses (NIBBLE_PULSE_FIXED[]).

²⁵ The worst-case step response time is specified, which is equal to twice a SPC trigger plus its SENT response time, when the field change happens right after the trigger pulse, see Figure 8. It is then 1 ms if the SPC trigger period is 0.5 ms.

 $^{^{26}}$ The absolute time difference of the magnetic information acquisition between the two dice in bus transmission mode, see section 11.4, based on 1.5 μs tick time

²⁷ Diagnostics response time, detailed description see section 15.2, Table 71, e.g. with 500μs ECU frame time, the max. value is 4.5ms

8. Magnetic Field Specifications

Magnetic field specifications are valid for temperature range [-40; 160] °C unless otherwise noted.

8.1. Rotary Stray-field Immune Mode – Low Field Variant (-1xx code)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Number of magnetic poles	N _P	4 ⁽²⁸⁾	-	-		
Magnetic Flux Density in X-Y plane	B _X , B _Y ⁽²⁹⁾			25 ⁽³⁰⁾	mT	$\sqrt{B_X^2 + B_Y^2}$ this is not the useful signal
Magnetic Flux Density in Z	Bz			100	mT	this is not the useful signal
Magnetic in-plane gradient of in-plane field component	$\frac{\Delta B_{XY}}{\Delta XY}$	3.8	10		$\frac{\text{mT}}{\text{mm}}$	$\frac{1}{2}\sqrt{\left(\frac{dB_X}{dX} - \frac{dB_Y}{dY}\right)^2 + \left(\frac{dB_X}{dY} + \frac{dB_Y}{dX}\right)^2}$ this is the useful signal
Magnet Temperature Coefficient	TC _m	-2400		0	ppm °C	
Field Strength Resolution (31)	$\frac{\Delta B_{XY}}{\Delta XY}$	0.075	0.100	0.125	$\frac{mT}{mm \ LSB}$	Magnetic field gradient norm (12bits data)
Field too Low Threshold	B_{TH_LOW}	0.8	1.2	(32)	$\frac{\text{mT}}{\text{mm}}$	Typ is recommended value to be set by user (see 14.5.4)
Field too High Threshold (33)	В _{тн_нібн}	70	100	102	$\frac{\text{mT}}{\text{mm}}$	

Table 19 - Magnetic specification for rotary stray-field immune- low field variant

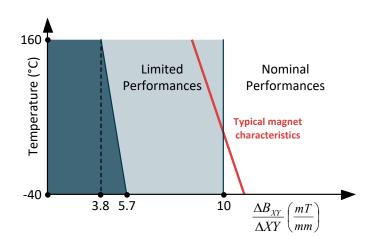


Figure 9 - Minimum useful signal definition for rotary stray-field immune application-low field variant

²⁸ Due to 4 poles magnet usage, maximum angle measurement range is limited to 180°

²⁹ The condition must be fulfilled for all combinations of BX and BY.

³⁰ Above this limit, the IMC® starts to saturate, yielding to an increase of the linearity error.

³¹ Only valid with default MAGNET_SREL_T[1..7] configuration

³² Higher values of Field too Low threshold are not recommended by Melexis and shall only been set in accordance with the

magnetic design and taking a sufficient safety margin to prevent false positive

33 Due to the saturation effect of the IMC, the FieldTooHigh monitor detects only defects in the sensor.

Nominal performances apply when the useful signal $\Delta B_{XY}/\Delta XY$ is above the typical specified limit. Under this value, limited performances apply. See section 9.2 for accuracy specifications.

8.2. Linear Stray-field Immune Mode (-2xx code)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Number of magnetic poles	N_{P}		2	-		Linear movement
Magnetic Flux Density in X	B_X			80 ⁽³⁰⁾	mT	$B_Y \leq 20mT$
Magnetic Flux Density in X-Y	B_{X} , $B_{Y}^{(29)}$			70 ⁽³⁰⁾	mT	$\sqrt{B_X^2 + B_Y^2}$, B _Y >20mT
Magnetic Flux Density in Z	Bz			100	mT	
Magnetic gradient of X-Z field components	$\frac{\Delta B_{XZ}}{\Delta X}$	3	6 ⁽³⁴⁾		$\frac{\text{mT}}{\text{mm}}$	$\sqrt{\left(\frac{\Delta B_X}{\Delta X}\right)^2 + \left(\frac{1}{G_{IMC}}\frac{\Delta B_Z}{\Delta X}\right)^2}$ (35)
Distance between the two IMC®	ΔX		1.91			See chapter 19 for magnetic center definitions
IMC gain	G_{IMC}		1.19			See (35)
Magnet Temperature Coefficient	TC _m	-2400		0	ppm °C	
Field Strength Resolution (31)	$\frac{\Delta B_{XZ}}{\Delta X}$	0.037	0.05	0.063	$\frac{\text{mT}}{\text{mm LSB}}$	Magnetic field gradient norm expressed in 12bits words
Field too Low Threshold	B_{TH_LOW}	0.2	1.2	(32)	$\frac{\text{mT}}{\text{mm}}$	Typ is recommended value to be set by user (see 14.5.4)
Field too High Threshold (33)	Втн_нібн	35	50	51	$\frac{\text{mT}}{\text{mm}}$	

Table 20 - Magnetic specifications for linear stray-field application

Nominal performances apply when the useful signal $\Delta Bxz/\Delta x$ and temperature ranges are inside the values defined in the following Figure 10. At higher temperature or lower field gradients, the accuracy of MLX90377 is degraded and Limited Performances apply, as described in Table 24 in section 9.3.

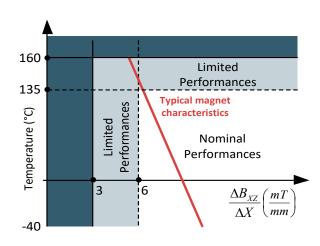


Figure 10 – Minimum useful signal definition for linear stray-field immune application

³⁴ Below this value, the performances are degraded due to a reduction of the signal-to-noise ratio, signal-to-offset ratio.
³⁵ IMC has better performance for concentrating in-plane (x-y) field components, resulting in a better magnetic sensitivity. A correction factor, called IMC gain has to be applied to the z field component to account for this difference.

8.3. Standard/Legacy Mode (-3xx code)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Number of magnetic poles	N _P	-	2	-		
Magnetic Flux Density in X-Y plane	B _x , B _y ⁽²⁹⁾			70 ⁽³⁰⁾	mT	$\sqrt{B_x^2 + B_y^2}$
Magnetic Flux Density in Z	Bz			100	mT	in absolute value
Useful Magnetic Flux Density Norm	B _{Norm}	10 ⁽³⁴⁾	20		mT	$\sqrt{{B_x}^2 + {B_y}^2} \text{ (x-y mode)}$ $\sqrt{{B_x}^2 + \left(\frac{1}{G_{IMC}}B_z\right)^2} \text{ (x-z mode)}$ $\sqrt{{B_y}^2 + \left(\frac{1}{G_{IMC}}B_z\right)^2} \text{ (y-z mode)}$ see 14.3.1 for sensing mode description.
IMC gain	G_{IMC}		1.19			see ⁽³⁵⁾
Magnet Temperature Coefficient	TC _m	-2400		0	ppm °C	
Field Strength Resolution ⁽³¹⁾	B_{Norm}	0.075	0.100	0.125	$\frac{mT}{LSB}$	Magnetic field gradient norm expressed in 12bits words
Field Too Low Threshold	B _{TH_LOW}	0.4	4.0	(32)	mT	Typ is recommended value to be set by user (see 14.5.4)
Field Too High Threshold (33)	В _{тн_нібн}	70	100	100	mT	

Table 21 - Magnetic specifications for Standard application

Nominal performances apply when the useful signal B_{Norm} is above the typical specified limit. Under this value, limited performances apply. See Table 25 in section 9.4 for accuracy specifications.

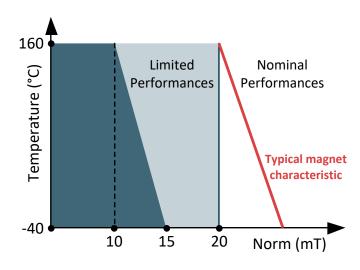


Figure 11 - Minimum useful signal definition for Standard/Legacy application

8.4. Rotary Stray-field Immune Mode- High Field Variant (-5xx code)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Number of magnetic poles	N _P	4 ⁽²⁸⁾	-	-		
Magnetic Flux Density in X-Y plane	B _X , B _Y ⁽²⁹⁾			67 ⁽³⁰⁾	mT	$\sqrt{B_X^2 + B_Y^2}$ this is not the useful signal
Magnetic Flux Density in Z	B _z			100	mT	this is not the useful signal
Magnetic in-plane gradient of in-plane field component	$\frac{\Delta B_{XY}}{\Delta XY}$	8.25	21		$\frac{\text{mT}}{\text{mm}}$	$\frac{1}{2}\sqrt{\left(\frac{dB_X}{dX} - \frac{dB_Y}{dY}\right)^2 + \left(\frac{dB_X}{dY} + \frac{dB_Y}{dX}\right)}$ this is the useful signal.
Magnet Temperature Coefficient	TC_m	-2400		0	ppm °C	
Field Strength Resolution ⁽³¹⁾	$\frac{\Delta B_{XY}}{\Delta XY}$	0.075	0.100	0.125	$\frac{mT}{mm \ LSB}$	Magnetic field gradient norm (12bits data)
Field too Low Threshold	B _{TH_LOW}	1.2	2	(32)	$\frac{\text{mT}}{\text{mm}}$	Typ is recommended value to be set by user (see 14.5.4)
Field too High Threshold ⁽³³⁾	В _{тн_нібн}	80	100	102	$\frac{\text{mT}}{\text{mm}}$	

Table 22 - Magnetic specification for rotary stray-field immune

See section 9.5 for accuracy specifications.

9. Accuracy Specifications

Accuracy specifications are valid for temperature range [-40;160] °C and supply voltage range [4.5; 5.5] V unless otherwise noted.

9.1. Definitions

This section defines several parameters, which will be used for the magnetic specifications.

9.1.1. Intrinsic Linearity Error

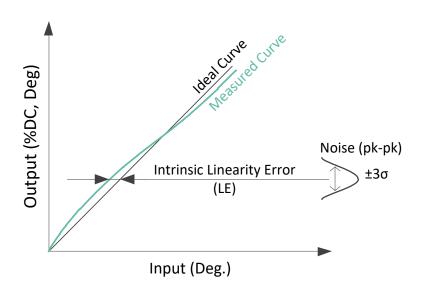


Figure 12 - Sensor accuracy definition

Figure 12 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) considering an ideal magnetic field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be significantly reduced with the multi-point end-user calibration (see section 14.2).

9.1.2. Total Angle Drift

After calibration, the output angle of the sensor might still change due to temperature change, aging, etc. This is defined as the total drift $\partial\theta_{TT}$:

$$\partial \theta_{TT} = |\max\{\theta(\theta_{IN}, T, t) - \theta(\theta_{IN}, T_{RT}, t_0)\}|$$

where θ_{IN} is the input angle, T is the temperature, T_{RT} is the room temperature, and t is the elapsed lifetime after calibration. t_0 represents the status at the start of the operating life. Note the total drift $\partial\theta_{TT}$ is always defined with respect to the angle at room temperature. In this datasheet, T_{RT} is typically defined at 35°C, unless stated otherwise. The total drift is valid for all angles along the full mechanical range. The total drift is expressed as an unsigned value, to indicate the ideal minimum drift should be 0. In reality, the drift can happen in both positive and negative directions.

9.2. Rotary Stray-field Immune Mode – Low Field Variant (-1xx code)

Valid before EoL calibration and for all applications under the conditions described in section 8.1.

Parameter	Symbol	Min	Тур	Max	Unit	Condition	
XY - Intrinsic Linearity Error	Le_xy	-1		1	Deg.		
				0.55	Deg.	Filter = 0 (FIR1), for nominal performance, see section 8.1	
Noise ⁽³⁶⁾				1	Deg.	Filter = 0 (FIR1), for limited performance, see section 8.1	
Noise					0.7	Deg.	Filter = 1 (FIR1), for limited performance, see section 8.1
				0.5	Deg.	Filter = 2 (FIR1), for limited performance, see section 8.1	
XY - Total Drift	$\partial \theta_{TT_XY}$			0.85	Deg.		
Hysteresis			0.1	0.2	Deg.		
Output Stray Field Immunity	$\partial heta_{ ext{FF}}$			0.6	Deg.	In accordance of ISO 11452-8, at 30 Deg.C, with 10mT/mm magnetic In-plane gradient of In-plane field component, and stray-field strength of 4000A/m from any direction	

Table 23 - Rotary stray-field immune magnetic performance – Low Field Variant

³⁶ ±30

³⁷ Stray field induced error is linearly proportional to the stray field strength

9.3. Linear Stray-field Immune Mode (-2xx Code)

Valid before EoL calibration and for all applications under the conditions described in section 8.2.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
XZ - Intrinsic Maximum Error		-2.5	±1.25	2.5	Dog	for nominal performance, see section 8.2
AZ - IIILIIIISIC IVIAXIIIIUIII EITOI	L _{E_XZ}	-4	±2	4	Deg.	for limited performance, see section 8.2
Nata in high and duals				0.3		Filter = 1, 6mT/mm
Noise in high speed mode (-21x code) (36)				0.45	Deg.	Filter = 0, 6mT/mm
(ZIX code)				0.9		Filter = 0, 3mT/mm
Noise in low power mode (-23x code) (36)				0.65	Deg.	Filter = 0, 3mT/mm
XZ - Total Drift	ð <i>0</i>			0.8 ⁽³⁸⁾	Deg.	for nominal performance, see section 8.2
AZ - Total Billt	$\partial heta_{TT_XZ}$			1.4 ⁽³⁸⁾		for limited performance, see section 8.2
Hysteresis				0.1	Deg.	6mT/mm gradient field
Output Stray Field Immunity	$\partial heta_{ ext{FF}}$			0.8	Deg.	In accordance of ISO 11452-8, at 30 Deg.C, with 6mT/mm magnetic In-plane gradient of In-plane field component, and stray-field strength of 4000A/m from any direction

Table 24 - Linear stray-field immune magnetic performances

REVISION 003 – December 22, 2021

³⁸ Valid for perfect field gradient. In most applications, an extra error caused by the bias field needs to be added. See Application note <u>Dual-Disk Linear Stray field Robust Position Sensing</u> on <u>melexis.com</u> for more information.

9.4. Standard/Legacy Mode (-3xx Code)

Valid before EoL calibration and for all applications under the conditions described in section 8.3.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
XY - Intrinsic Linearity Error	L_{E_XY}	-1		1	Deg.	
XZ - Intrinsic Linearity Error	L _{E_XZ}	-2.5	±1.25	2.5	Deg.	
YZ - Intrinsic Linearity Error	$L_{\text{E_YZ}}$	-2.5	±1.25	2.5	Deg.	
Noise for nominal performance			0.05	0.1		Filter = 0, $\sqrt{B_x^2 + B_y^2} > 40$ mT
in section 8.3 in low power			0.1	0.2	Deg.	Filter = 0
mode (-30x, -33x code) (36)			0.05	0.1		Filter = 2
Noise for limited performance			0.2	0.4		Filter = 0
in section 8.3 in low power			0.14	0.28	Deg.	Filter = 1
mode (-30x, -33x code) (36)			0.1	0.2		Filter = 2
Noise for nominal performance in section 8.3 in high speed mode (-31x code) (36)				0.28	Deg.	Filter = 0
Noise for limited performance in section 8.3 in high speed mode (-31x code) (36)				0.56	Deg.	Filter = 0
VV Total Drift	an			0.45	D	for nominal performance, see section 8.3
XY - Total Drift	$\partial heta_{TT_XY}$			0.6	Deg.	for limited performance, see section 8.3
V7 Tatal Duift	an			0.6	Daz	for nominal performance, see section 8.3
XZ - Total Drift	$\partial heta_{TT_XZ}$			0.8	Deg.	for limited performance, see section 8.3
V7 Total Duift	20			0.6	Daz	for nominal performance, see section 8.3
YZ - Total Drift	$\partial heta_{TT_YZ}$			0.8	Deg.	for limited performance, see section 8.3
Hystorosis			0.05	0.1	Doc	for nominal performance, see section 8.3
Hysteresis			0.1	0.2	Deg.	for limited performance, see section 8.3

Table 25 - Standard Mode Nominal Magnetic Performances

9.5. Rotary Stray-field Immune Mode – High Field Variant (-5xx Code)

Valid before EoL calibration and for all applications under the conditions described in section 8.4.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
XY - Intrinsic Linearity Error	$L_{E_{_}XY}$	-1		1	Deg.	
Noise in high speed mode (-51x code) (36)				0.35 0.5 0.7	Deg.	Filter = 2 Filter = 1 Filter = 0
Noise in low power mode (-53x code) (36)				0.5	Deg.	Filter = 0
XY - Total Drift	$\partial heta_{TT_XY}$			0.67	Deg.	
Hysteresis			0.1	0.15	Deg.	
Output Stray Field Immunity (37)	$\partial heta_{ ext{FF}}$			0.3	Deg.	In accordance of ISO 11452-8, at 30 Deg.C, with 21mT/mm magnetic In-plane gradient of In-plane field component, and stray-field strength of 4000A/m from any direction

Table 26 - Rotary stray-field immune magnetic performance – High Field Variant

10. Memory Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Note
ROM	ROMsize		32		КВ	1 bit parity check (single error detection)
RAM	RAMsize		1024		В	1 bit parity check (single error detection)
NVRAM	NVRAMsize		256		В	6 bits ECC (single error correction, double error detection)

Table 27 - Memory Specifications

11. Output Accuracy and Protocol

11.1. Analog Output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Thermal analog output Drift				0.2 0.3	%VDD	up to 125 °C up to 160 °C
	R _{DAC}		12		bit	12bit DAC (Theoretical)
Analog Output Resolution		-4		+4	LSB ₁₂	INL (before EoL calibration), output clamped between 3- 97%VDD
		-1.5		1.5	LSB ₁₂	DNL
Ratiometric Error		-0.1		0.1	%VDD	

Table 28 – Analog output accuracy

11.2. PWM (Pulse Width Modulation) Output

11.2.1. Definition

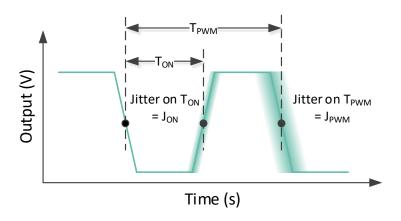


Figure 13 - PWM Signal definition

Parameter	Symbol	Test Conditions
PWM period	T_{PWM}	Trigger level = 50% VDD
Rise time, Fall time	t_{rise} , t_{fall}	Between 10% and 90% of VDD
Jitter	J_{ON} , J_{PWM}	$\pm 3\sigma$ for 1000 successive acquisitions with clamped output
Duty Cycle	DC	T _{ON} / T _{PWM}

11.2.2. PWM performances

Parameter	Symbol	Min	Тур	Max	Unit	Condition
PWM Output Resolution	R_{pwm}		12		bit	
PWM %DC Jitter	J_{DC}			0.03	%DC	Push-Pull, $2kHz$, $C_L=4.7nF$, $R_{LPU}=4.7k\Omega$
PWM Period Jitter	J_{pwm}	-	-	300	ns	Push-Pull, 2kHz, C _L =4.7nF, R _{LPU} =4.7kΩ
PWM %DC thermal drift			0.02	0.05	%DC	Push-Pull, $2kHz$, $C_L=4.7nF$, $R_{LPU}=4.7k\Omega$

Table 30 - PWM Signal Specifications

11.3. SENT (Single Edge Nibble Transmission) Output

The MLX90377 provides a digital output signal compliant with SAE J2716 Revised APR2016.

11.3.1. Sensor message definition

The MLX90377 repeatedly transmits a sequence of pulses, corresponding to a sequence of nibbles (4 bits), with the following sequence:

- Calibration/Synchronization pulse period 56 clock ticks to determine the time base of the SENT frame
- One 4-bit Status and Serial Communication nibble pulse
- A sequence of one up to six 4-bit data nibbles pulses representing the values of the signal(s) to be transmitted. The number of nibbles will be fixed for each application of the encoding scheme (i.e. Single Secure sensor format A.3, Throttle position sensor A.1)
- One 4-bit Checksum nibble pulse
- One optional pause pulse

See also SAE J2716 APR2016 for general SENT specification.

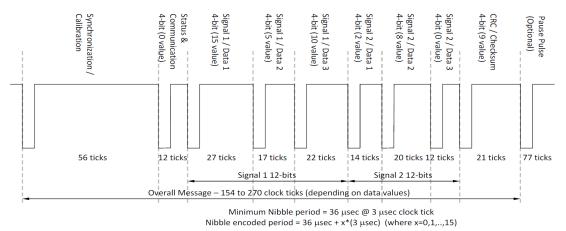


Figure 14 - SENT message encoding example for two 12bits signals

11.3.2. Sensor message frame contents

The SENT output transmits a sequence of data nibbles, according to the following configurations:

Description	Symbol	Min	Тур	Max	Unit	Description
Clock tick time	Tick Time		3	6	μs	Main use cases: Normal SENT, 3μs tick time Slow SENT, 6μs tick time
Number of data nibbles	Xdn	3	6			
Frame duration (no pause pulse)	Npp	154		270	ticks	6 data nibbles
Frame duration with pause pulse	Ррс	282	320	922	ticks	
Sensor type			A.1 A.3			Dual Throttle Position sensors Single Secure sensors

Table 31 - SENT Protocol Frame Definition

11.3.3. SENT Format Option

The default SENT format option of MLX90377 is Single Secure Sensor A.3 (H.4). The MLX90377 SENT transmits a sequence of data nibbles; according single secure sensor format defined in SAE J2716 appendix H.4 ⁽³⁹⁾. The frame contains 12-bit angular value, an 8 bit rolling counter and an inverted copy of the most significant nibble of angular value.

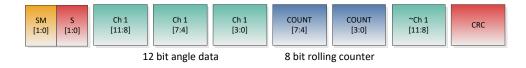


Figure 15 - H.4 Single Secure Sensor Frame Format

Shorthand Description	Tick time	Data nibbles	Pause Pulse	Serial message	Data format
SENT2016-03.0us-6dn-ppc(366.0)-esp-A.3	3μs	6	Υ	Enhanced	H.4
SENT2016-03.0us-6dn-ppc(366.0)-nsp-A.3	3µs	6	Υ	None	H.4
SENT2016-03.0us-6dn-npp-nsp-A.3	3µs	6	N	None	H.4
SENT2016-##-#us-#dn-###()-###-A.3	112	6	Y/N	En/None	H.4

Table 32 - H.4 Single Secure Sensor Shorthand examples

³⁹ As referenced from section A.3 Single Secure Sensor of the standard.

Datasheet

11.3.4. Start-up behaviour

The circuit will send initialisation frames once digital start-up is done but angle measurement initialisation sequence is not yet complete. These initialisation frames content can be chosen by user with the following option:

SENT_INIT_GM	Initialisation frame value	Comments
0	0x000	SAE compliant
1	0xFFF	OEM requirement

Table 33 - Initialization Frame Content Definition

11.3.5. Output configuration

In SENT mode, the MLX90377 can be configured in open drain mode, normal push-pull mode, as well as an enhanced emission mode, which is the default configuration, see also section 14.1.1.

The tick time is the unit reference for SENT. The default tick time value is 3µs.

The output resistive load, e.g. the external pull-up or pull-down resistor should be carefully selected, because the MLX90377 has a built-in high order low pass filter. A large resistive load will deteriorate the generated SENT signal, and could make the output signal not comply to the SENT specifications, such as the fall times and the minimum output voltages, e.g. parameters $V_{\text{satD_lopp}}/V_{\text{satD_hipp}}$ in Table 10 – Electrical Specifications in chapter 6. In principle, the values in Table 10 – Electrical Specifications in chapter 6 should be considered, which means it is not recommended to have a resistive load value smaller than $10k\Omega$, and a resistive load value smaller than $3k\Omega$ should be avoided. The maximum output resistive load value should be less than $55k\Omega$ to avoid unexpected impact from leakage current.

Furthermore, the output capacitance should also be properly chosen, together with the output resistive load to correspondingly match the application, e.g. tick time, to allow appropriate time constant for the transmission of the SENT signal. Details can be seen in sections 16.1 and 16.2.

11.3.6. SENT Output Timing configuration

Different SENT output timing configurations are listed in the following tables:

SENT_TICK_TIME	Tick time configuration	Description
0	6 μs	
1	1 μs	Not recommended
2	2 μs	Not recommended
3	3 μs	Standard SENT
4	4 μs	Not recommended
5	5 μs	Not recommended

SENT_TICK_TIME	Tick time configuration	Description
6	12 μs	Do not use
7	24 μs	Do not use

Table 34 - SENT Tick Time Configuration (-33x code)

NIBBLE_PULSE_CONFIG	High/low time configuration
2	Fixed low time (5 ticks)
3	Fixed high time (6 ticks)

Table 35 - SENT Nibble configuration (high/low times)

11.3.7. Serial message channel (slow channel)

Serial data is transmitted sequentially in bit number 3 and 2 of the status and communication nibble. A serial message frame stretches over 18 consecutive SENT data messages from the transmitter. All 18 frames must be successfully received (no errors, calibration pulse variation, data nibble CRC error, etc.) for the serial value to be received.

11.3.7.1. Enhanced Serial Message (ESM)

Enhanced serial message with 12-bit data and 8-bit message ID is used (SAE J2716 APR2016 5.2.4.2, Figure 5.2.4.2-2). According to the standard, SM[0] contains a 6bits CRC followed by a 12-bits data. Message content is defined by a 8-bit message ID transmitted in the SM[1] channel. Correspondence between ID and message content is defined in the tables below (Table 36, Table 37 and Table 38).

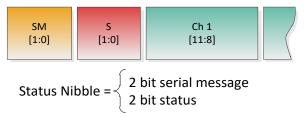


Figure 16 - SENT Status Nibble and Serial Message

By default, the short sequence consisting of a cycle of 24 data is transmitted (Table 36). An extended sequence can be used through configuration of SENT_SLOW_EXTENDED (Table 37). Additionally, the norm of the B field detected by the sensor can be returned at the end of the sequence by setting SENT SLOW BFIELD (Table 38)

#	8-bit ID	ltem	Source data
1	0x01	Diagnostic error code	Current status code from RAM
2	0x06	SENT standard revision	SENT_REV from NVRAM
3	0x01	Diagnostic error code	Current status code from RAM
4	0x05	Manufacturer code	SENT_MAN_CODE from NVRAM
5	0x01	Diagnostic error code	Current status code from RAM
6	0x03	Channel 1 / 2 Sensor type	SENT_SENSOR_TYPE from NVRAM
7	0x01	Diagnostic error code	Current status code from RAM
8	0x07	Fast channel 1: X1	SENT_CHANNEL_X1 from NVRAM
9	0x01	Diagnostic error code	Current status code from RAM

#	8-bit ID	ltem	Source data
10	0x08	Fast channel 1: X2	SENT_CHANNEL_X2 from NVRAM
11	0x01	Diagnostic error code	Current status code from RAM
12	0x09	Fast channel 1: Y1	SENT_CHANNEL_Y1 from NVRAM
13	0x01	Diagnostic error code	Current status code from RAM
14	0x0A	Fast channel 1: Y2	SENT_CHANNEL_Y2 from NVRAM
15	0x01	Diagnostic error code	Current status code from RAM
16	0x23	(Internal) temperature	Current temperature from RAM
17	0x01	Diagnostic error code	Current status code from RAM
18	0x29	Sensor ID #1	SENT_SENSOR_ID1 from NVRAM
19	0x01	Diagnostic error code	Current status code from RAM
20	0x2A	Sensor ID #2	SENT_SENSOR_ID2 from NVRAM
21	0x01	Diagnostic error code	Current status code from RAM
22	0x2B	Sensor ID #3	SENT_SENSOR_ID3 from NVRAM
23	0x01	Diagnostic error code	Current status code from RAM
24	0x2C	Sensor ID #4	SENT_SENSOR_ID4 from NVRAM

Table 36 - SENT Enhanced Slow Channel Standard Data Sequence

#	8bit ID	ltem	Source data
25	0x01	Diagnostic error code	Current status code from RAM
26	0x90	OEM Code #1	SENT_OEM_CODE1 from NVRAM
27	0x01	Diagnostic error code	Current status code from RAM
28	0x91	OEM Code #2	SENT_OEM_CODE2 from NVRAM
29	0x01	Diagnostic error code	Current status code from RAM
30	0x92	OEM Code #3	SENT_OEM_CODE3 from NVRAM
31	0x01	Diagnostic error code	Current status code from RAM
32	0x93	OEM Code #4	SENT_OEM_CODE4 from NVRAM
33	0x01	Diagnostic error code	Current status code from RAM
34	0x94	OEM Code #5	SENT_OEM_CODE5 from NVRAM
35	0x01	Diagnostic error code	Current status code from RAM
36	0x95	OEM Code #6	SENT_OEM_CODE6 from NVRAM
37	0x01	Diagnostic error code	Current status code from RAM
38	0x96	OEM Code #7	SENT_OEM_CODE7 from NVRAM
39	0x01	Diagnostic error code	Current status code from RAM
40	0x97	OEM Code #8	SENT OEM CODE8 from NVRAM

Table 37 - SENT Slow Channel Extended Data Sequence

#	8bit ID	Item	source data
25	0x80	Field Strength	SENT_SLOW_EXTENSION 0: Disabled. No further extension 1: NTC value 2: field-strength temperature compensated, before magnet sensitivity compensation 3: field-strength temperature and gain independent (standard sequence)
41	0x80	Field Strength	SENT_SLOW_EXTENSION 0: Disabled. No further extension 1: NTC value 2: field-strength temperature compensated, before magnet sensitivity compensation 3: field-strength temperature and gain independent (extended sequence)

Table 38 - SENT Slow Channel Magnetic Field Norm ID and position

For Field Strength encoding, see section 14.5.4.

11.3.7.2. Short Serial Message (SSM)

Short serial message with 8-bit data and 4-bit message ID is used (SAE J2716 APR2016 5.2.4.1, Figure 5.2.4.1-1). According to the standard, it contains a 8-bit data followed by a 4-bit CRC.

#	4-bit ID	ltem	Source data
1	0x01	Diagnostic error code	Current status code from RAM
2	0x06	SENT standard revision	SENT_REV from NVRAM
3	0x01	Diagnostic error code	Current status code from RAM
4	0x05	Manufacturer code	SENT_MAN_CODE from NVRAM
5	0x01	Diagnostic error code	Current status code from RAM
6	0x03	Channel 1 / 2 Sensor type	SENT_SENSOR_TYPE from NVRAM
7	0x01	Diagnostic error code	Current status code from RAM
8	0x07	Fast channel 1: X1	SENT_CHANNEL_X1 from NVRAM
9	0x01	Diagnostic error code	Current status code from RAM
10	0x08	Fast channel 1: X2	SENT_CHANNEL_X2 from NVRAM
11	0x01	Diagnostic error code	Current status code from RAM
12	0x09	Fast channel 1: Y1	SENT_CHANNEL_Y1 from NVRAM
13	0x01	Diagnostic error code	Current status code from RAM
14	0x0A	Fast channel 1: Y2	SENT_CHANNEL_Y2 from NVRAM
15	0x01	Diagnostic error code	Current status code from RAM
16	0x02	(Internal) temperature	Current temperature from RAM
17	0x01	Diagnostic error code	Current status code from RAM
18	0x0B	Sensor ID #1	SENT_SENSOR_ID1 from NVRAM

#	4-bit ID	ltem	Source data
19	0x01	Diagnostic error code	Current status code from RAM
20	0x0C	Sensor ID #2	SENT_SENSOR_ID2 from NVRAM
21	0x01	Diagnostic error code	Current status code from RAM
22	0x0D	Sensor ID #3	SENT_SENSOR_ID3 from NVRAM
23	0x01	Diagnostic error code	Current status code from RAM
24	0x0E	Sensor ID #4	SENT_SENSOR_ID4 from NVRAM
25	0x01	Diagnostic error code	Current status code from RAM
26	0x04	Field Strength	Field Strength (mapped to 8 bit)

Table 39 - SENT Short Serial Slow Channel Standard Data Sequence

11.3.8. Serial Message Error Code

11.3.8.1. Enhanced Serial Message (ESM)

The list of error and status messages transmitted in the 12-bit Serial Message data field when Serial Message 8-bit ID is 0x01, is given in the Table 40. The error is one-hot encoded and therefore each bit is linked to one or several diagnostics. Only the first error detected during a diagnostics cycle is reported, and serial message error code will be updated at every diagnostics cycle. The serial message error code will only be cleared out once all the errors disappear. This mechanism ensures only one error at a time takes control of the error debouncing counter (see 14.5.2).

The MSB acts as an error Flag when SENT_DIAG_STRICT is set. This bit will be high only when an error is present. This bit can be kept high even if no error is present (SENT_DIAG_STRICT = 0).

Bit Nb	12 Bit Data (hex)	Diagnostic	Comments
-	0x000 / 0x800	No error	Programmable (see SENT_DIAG_STRICT in Table 49)
0	0x801	GAINOOS	Magnetic Signal Conditioning Gain Clamping
1	0x802	FieldTooLow	Fieldstrength is below defined low threshold (see 14.5.4)
2	0x804	FieldTooHigh	Fieldstrength is above defined high threshold (see 14.5.4)
3	0x808	ADCclip	ADC is saturated, either low or high
4	0x810	ADC_test	ADC made wrong conversion
5	0x820	Analog Supply Monitors	Detects VDDA (VDEC) over and under voltage or VDD under voltage
6	0x840	Digital Supply Monitors	Detects VDDD (1.8V internal digital supply) overvoltage
7	0x880	RoughOffset	Hall Element offset monitor
8	0x900	Over/Under Temp / ADCdrop	Temperature sensor monitor (see 14.5.3) / ADC conversion interruption
9	0xA00	DSP overflow / HE_Bias / Analog Front End	DSP overflow / Hall Element biasing issue / Analog front end self-test
10	0xC00	Supply Bias Current / Stress Range	Current biasing system monitor / Stress Sensor Readout
11	0x800	Extra Error Flag	set to one if any error present (only when SENT_DIAG_STRICT = 1). Otherwise, always high.

Table 40 - SENT Serial Message Error Code for Enhanced Serial Message

11.3.8.2. Short Serial Message (SSM)

The list of error and status messages transmitted in the 8-bit Serial Message data field when Serial Message 8-bit ID is 0x01, is given in the Table 41. The error is one-hot encoded and therefore each bit is linked to one or several diagnostics. Only the first error detected is reported and serial message error code will not be updated until all the errors have disappeared. This mechanism ensures only one error at a time takes control of the error debouncing counter (see 14.5.2).

Bit Nb	8 Bit Data (hex)	Diagnostic	Comments
-	0x00	No error	
0	0x01	GAINOOS	Magnetic Signal Conditioning Gain Clamping
1	0x02	FieldTooLow	Fieldstrength is below defined low threshold (see 14.5.4)
2	0x04	FieldTooHigh	Fieldstrength is above defined high threshold (see 14.5.4)
3	0x08	ADCclip / ADC_test	ADC is saturated, either low or high / ADC made wrong conversion
4	0x10	Analog Supply Monitors / Digital Supply Monitors / Supply Bias Current / Stress Range	Detects VDDA (VDEC) over and under voltage or VDD under voltage / Detects VDDD (1.8V internal digital supply) overvoltage / Current biasing system monitor / Stress Sensor Readout
5	0x20	RoughOffset	Hall Element offset monitor
6	0x40	Over/Under Temp / ADCdrop	Temperature sensor monitor (see 14.5.3) / ADC conversion interruption

Table 41 - SENT Serial Message Error Code for Short Serial Message

11.3.9. SENT configuration shorthand definition

Shorthand description	Format	Req	90377 programmable setting
SENT SAE J2716 Rev	SENT xxxx	2007 2008 2010 2016	CRC_2007 0 > 2007 1 2007
Clock Tick length [μs]	XX.X μs	1 <xx<12< td=""><td>SENT_TICK_TIME 0 SENT 6μs 1 SENT 1μs 2 SENT 2μs 3 SENT 3μs 4 SENT 4μs 5 SENT 5μs</td></xx<12<>	SENT_TICK_TIME 0 SENT 6μs 1 SENT 1μs 2 SENT 2μs 3 SENT 3μs 4 SENT 4μs 5 SENT 5μs
SENT format option	H.x	SENT format	SENT_FC_FORMAT 0: format H.1 1: format H.1 2: format H.2 3: format H.3 4: format H.4 5: format H.5 6: format H.6 7: format H.7
Pause Pulse Option	npp ppc (xxx.0)	No pause Pulse Pause Pulse with const. frame length Frame Length (in clock ticks)	PROTOCOL 0 = npp 2 = ppc T_FRAME xxx > 282922
Use of Serial protocol	nsp ssp esp	No serial protocol Short serial protocol Enhanced serial protocol	SERIAL_CONFIG 1 nsp 2 ssp 3 esp

Table 42 - SENT Shorthand Description

11.4. SPC (Short PWM Code) Output

11.4.1. General Definition

The MLX90377 can output the signal in SPC (Short PWM Code) frame selection according to the SPC2015 rev1.0. It is an extension of the SAE J2716 SENT protocol. It allows on-demand transmission of one data frame where the master triggers the transfer of data. The transmission of the SPC frame is always triggered by the master in every mode (synchronous and with ID selection).

The SPC output of the MLX90377 transmits a sequence of data nibbles, according to the following configurations:

Description	Symbol	Min	Тур	Max	Unit	Description
Clock tick time	tickTime	0.5	1.5 ⁽⁴⁰⁾	12	μs	Main use cases: SPC, 1.5µs tick time (default) Normal SENT, 3µs tick time Slow SENT, 6µs tick time (see section 7.6)
Number of data nibbles	Xdn	3		6		
Frame duration (no pause pulse)	Npp	154		270	ticks	6 data nibbles
Frame duration with pause pulse	Ррс	282	320	922	ticks	
Sensor type	A.3					Single Secure sensors

Table 43 - SENT Protocol Frame Definition

11.4.2. Tick Time requirements

The basic SPC protocol unit time is defined as 3 μ s. The protocol standard requires a tick time variation of no more than 20% for legacy applications and 10% for general applications. The lowest tick time that can be programmed in the MLX90377 is 0.5 μ s. Improved Emission Mode will only be possible for tick time equal or greater to 1.5 μ s.

11.4.3. Output Configuration

In SPC mode, the MLX90377 can be configured in open drain mode, normal push-pull mode, as well as an enhanced emission mode, see also section 14.1.1.

The default output driver configuration is to send the SENT frame in push-pull mode.

Users can select three options (see parameter SPC_PP_Option, in Table 49 in chapter 12):

- 1. IC is always in open drain
- 2. IC sends the SENT frame from a pre-defined timer (SPC_OUT_ON_TH) to CRC in push-pull. It then returns to high-Z
- 3. IC sends the SENT frame from a pre-defined timer (SPC_OUT_ON_TH) until end of a pre-defined timer (SPC_OUT_OFF_TH). It then returns to high-Z.

⁴⁰ Please contact our Direct Sales Team if other options then main use cases is required.

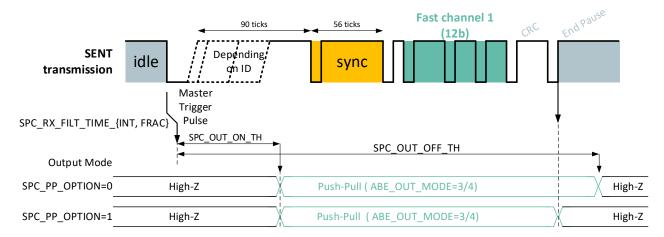


Figure 17 – SPC output driver state switching

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Push-Pull Duration	$T_{push-pull}$	280		550	μs	Configurable Duration how long IC stays in push-pull once sync pulse of SENT frame starts.

Table 44 – Push-pull duration in SPC mode

The sensor output driver can also be configured as open-drain to enable the master to drive the line. Initially the line is at high level, the chip is waiting for the master to pull it low. This state is called 'Idle state', meaning the sensor is not transmitting any data. At a given time, the master will send a trigger low pulse along the line. The embedded CPU of the sensor will measure this master pulse length. If it is recognized as a valid trigger, the chip will answer by sending back an SPC frame containing the current data. Several configurations of the SPC frame are available. If the trigger pulse is not valid, the chip will not transmit any data, keeping the line free. In order to set up the permanent open-drain mode (NV_ABE_OUT_MODE=1), it is important to configure the parameters NV_SPC_OUT_ON_TH and NV_SPC_OUT_OFF_TH thresholds according to the FRAME settings.

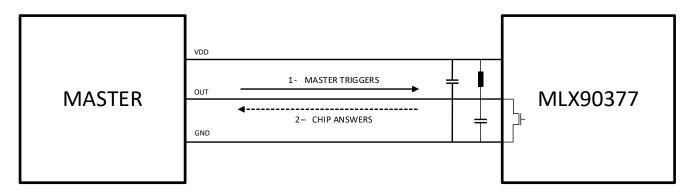


Figure 18 – SPC standard master-slave configuration

Like in SENT, the tick time is the unit reference for SPC. It can be as low as $0.5\mu s$ enabling fast transmission rate and short frames. However, the default tick time value is $1.5\mu s$ in SPC mode, to benefit from the fast acquisition and magnetic processing of the device.

For the MLX90377, the output resistance, e.g. the external pull-up or pull-down resistor should be carefully selected, because the MLX90377 has a built-in high order low pass filter, too heavy resistive load will

Datasheet

deteriorate the generated SPC signal, and could make the output signal not comply to the SPC specifications, such as the fall times and the minimum output voltages, i.e. parameters $V_{\text{satD_loip}}/V_{\text{satD_hipp}}$ and $V_{\text{satD_loie}}/V_{\text{satD_hipe}}$ in Table 10 – Electrical Specifications in chapter 6. In principle, the values in Table 10 – Electrical Specifications in chapter 6 should be considered, which means it is not recommended to have a resistive load value smaller than $10k\Omega$, and a resistive load value smaller than $3k\Omega$ should be avoided. The maximum output resistive load value should be less than $55k\Omega$ to avoid unexpected impact from leakage current.

Furthermore, the output capacitance should also be properly chosen together with the output resistive load to correspondingly match the application, e.g. tick time, SPC ID, etc. to allow appropriate time window for the trigger pulse reception. The worst case scenario occurs for SPC ID0, where the trigger pulse should be recognized within only 4 ticks (refer to Table 48 and Figure 23 in section 11.4), resulting in 6 μ s time window for 1.5 μ s tick time SPC protocol. Therefore, RC time constant should be less than 6 μ s in such application. When the time window for the trigger pulse reception changes, the resistive and capacitive load on output can be scaled correspondingly. It is also important to note that the mentioned capacitive load refers to the total load on the bus, meaning the value should be equally divided if there are multiple sensors connected, also the load on the ECU side should be taken into account and scaled properly.

11.4.4. SPC Output Timing configuration

Different SPC output timing configurations are listed in the following table:

SENT_TICK_TIME	Tick time configuration	Description
0	3 μs	
1	0.5 μs	
2	1 μs	
3	1.5 μs	Default SPC
4	2 μs	
5	2.5 μs	
6	6 μs	
7	12 μs	

Table 45 - SPC Tick Time Configuration (-x8x code)

11.4.5. Frame Content

11.4.5.1. Global Definition

A message frame consists of the following sequence:

- 1. Trigger pulse
- 2. Synchronization pulse
- 3. Status and communication nibble
- 4. Data nibbles

- 5. Checksum nibble
- 6. End Lone pulse

The overall scheme of the SPC frame transmission is described in the following figure.

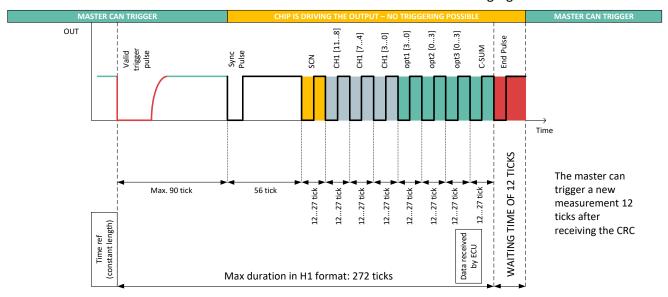


Figure 19 - SPC Frame description

11.4.5.2. Trigger Pulse

The trigger pulse is considered to be part of the SPC frame. The timing related to this trigger pulse is critical as it is initializing the data transfer. The sensor is monitoring the line and computes the duration the line is kept low by the master. This time is called "master low time".

Parameter	Symbol	Min	Тур	Max	Unit
Falling edge threshold	V_{thfSPC}	1.1	1.32	1.7	V
Rising Edge Threshold	V_{thrSPC}	1.25	1.52	1.8	V

Table 46 – SPC Master Trigger Pulse Specifications

The falling edge of the trigger pulse is considered to be the reference of the protocol. The master low time is quantized using clock ticks.

After a non-valid trigger detected, a blanking time of five unit times (counted from the detected rising edge of the trigger pulse) is used by the sensor, before the next trigger measurement is performed. This concept improves EMC robustness and avoids unwanted answer from the chip if the line is subject to spikes.

After detection of a valid trigger and expiration of the trigger pulse time according to the selected transmission mode the sensor starts with the remaining protocol frame.

11.4.5.3. Status and communication nibble (SCN)

The status nibble contains information for error reporting and some optional information like the chip ID or slow channel data.

The position of the 2 status bits and 2 ID bits in SPC mode of MLX90377 complies with the one specified in the SPC standard, but can be reversed if the SENT-standard definition is preferred.

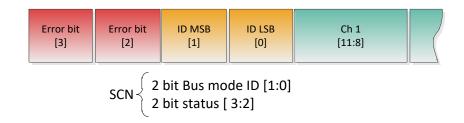


Figure 20 - SPC Bus Transmission Mode Multiplex Example (SPC SCN BIT ORDER=1)

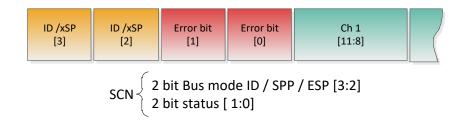


Figure 21 – SENT Transmission Mode Multiplex Example (SPC_SCN_BIT_ORDER=0)

11.4.5.4. Data Nibble

The definition of the data nibbles in SPC matches with SENT. The number of data nibbles transmitted is determined by frame format configured. The data content is programmable. By default, 12 bits of data are transmitted in 3 nibbles.

11.4.5.5. Checksum Nibble

SPC protocol allows transmission of error/warning flags in the status and communication nibble. Then it is highly recommended to take this nibble into the checksum calculation. This option is programmable in the MLX90377. Nevertheless, to be SENT compatible, it is possible to limit the checksum input data to data nibbles only.

MLX90377 also supports the SPC improved nibble checksum algorithms (for the SENT nibbles), method-E and method-O.

11.4.5.6. End Lone Pulse

The MLX90377 generates a pulse with a length of 12 clock ticks after transmission of checksum nibble. In that case the master cannot trigger the chip. During that period, MLX90377 is still holding the line. The blanking time is programmable, see parameters SPC_OUT_ON_TH, SPC_OUT_OFF_TH in chapter 12.

11.4.6. Synchronous Transmission Mode

In the SPC synchronous mode, the sensor responds to a low pulse of duration between 1.5 and 4 tick times. When using this mode, the time between the end of the trigger pulse and the start of the SENT frame shall

be set properly⁽⁴¹⁾, in order to ensure the synchronisation between the master and the chip, and the data gets acquired in the same frame, which is guaranteed with the condition of 3µs tick time.

Parameter	Symbol	Min	Тур	Max	Unit
SPC Synchronous Mode Trigger Low Time	$t_{mlowSPC}$	1.5	2.75	4	ticks

Table 47 – SPC Synchronous Timings

11.4.7. Bus Transmission Mode

In the on-demand timing modes, the sensor responds to SPC trigger pulses from the master when its low pulse time corresponds to its pre-programmed ID. The selection of the ID is done with the parameter SPC_ID.

Parameter	Symbol	SPC_CHIP_ID	Min	Тур	Max	Unit	Remark
Bus Mode Master Low Time		0	8		15	ticks	
	+	1	16		28	ticks	
	t _{mlowSPC}	2	29		49	ticks	
		3	50		82	ticks	
Total trigger time	t _{mtrSPC}	-	-	90	-	ticks	master trigger pulse, independent of SPC_ID, not programmable

Table 48 – Bus Transmission Mode Timings

The ECU is able to trigger only one chip on a bus. The maximum amount of chip on the bus line is 4. Each chip must have its output configured to open-drain with a different ID.

⁴¹ Please contact Melexis application service for detailed support.

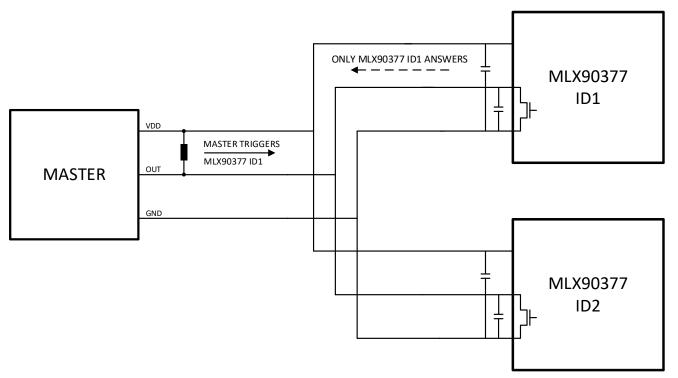


Figure 22 – SPC Bus Transmission Mode Multiplex Example

Figure 23 shows the timing diagram of the trigger pulse reception depending on the SPC ID.

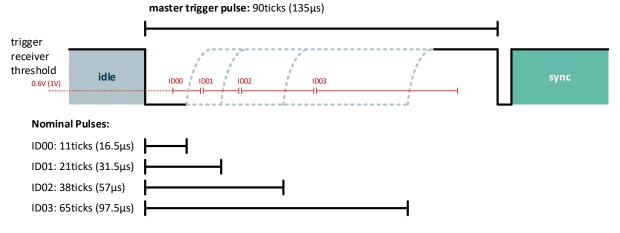


Figure 23 – Time Window for the Trigger Pulse Reception

Notes:

- ID01 and ID03 are advised when only 2 sensors are on the bus
- For correct trigger pulse reception, the clock tolerance of the sensor, the time constant of the rising edge and the receiver threshold shall be considered
- The ECU may adjust the low trigger time to account for the time constant of the rising edge
- Example timings are calculated for the default 1.5μs tick time

Bus Transmission Mode allows two configurations for acquiring data and sending data:

- 1. The IC for which SPC ID matches acquires its data and sends in the same frame the data.
- 2. All IC's on the bus acquire the data when a specific SPC ID is sent. Each IC buffers and transmits when called upon, see Figure 24.

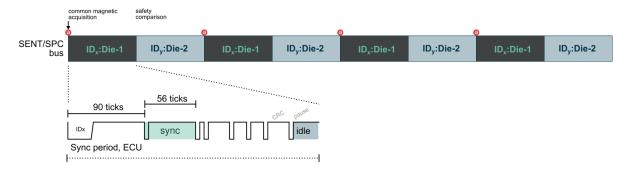


Figure 24 – Acquire Data during one SPC ID on all ICs on the same bus. Buffer and send when SPC ID matches.

11.4.8. Programming in Bus Mode

The EoL programming can be executed even if 4 chips are connected to the same bus. The protocol is capable of selective communication with one chip connected in bus configuration together with other chips (up to 4 on the same line). It uses the MUPET_ADDRESS stored in NVRAM to select the chip to be programmed. When programming 4 chips in parallel, external serial resistors shall be avoided, and are in fact not needed, as the improved emission mode is addressing the additional filtering via a resistance implemented on chip. It enables EoL programming even if 4 chips are connected to the same bus. The SPC ID must be programmed up front. Discuss with your local sales representative for this option.

Figure 25 – Example of multiple units programming

12. End User Programmable Items

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
	GENERAL CONFIGURATION					
USER_ID[05]	User Id. Reference, details see Table 50 in chapter 13	see Tab	ole 50 in cha	pter 13	8	
WARM_TRIGGER_LONG	Add delay for PTC Entry Level	0	0	0	1	
WARM_ACT_HIGHV	Select PTC Entry Level Default $0 = V_{PROV0}$	0	0	0	1	
ROUT_LOW	Select output impedance for PTC communication	1	1	1	1	
MUPET_ADDRESS_MOD E	Configuration for PTC address. Do not modify!	0	0	0	1	
MUPET_ADDRESS	PTC address for which the slave will communicate	0/1	0/1	0/1	2	
MEMLOCK	Enable NVRAM write protection	0	0	0	2	
	SENSOR FRONT END					
GAINMIN GAINMAX	Minimum virtual gain code [063] Maximum virtual gain code [063]	0 63	0 63	0 64	8	
SENSING_MODE	Rotary position stray-field Immune X-Y Angular Rotary (standard / legacy) Y-Z Angular Rotary (standard / legacy) X-Z Angular Rotary (standard / legacy) Linear position, stray-field Immune	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4	3	
	FILTERING					
FILTER	FIR filter bandwidth selection	0	0	0	2	
HYST	Hysteresis of the denoising filter (hides the small variations but lowers the resolution) Denoising and FIR filtering are applied before the linearization step.	0	0	0	8	
DENOISING_FILTER_ALPHA _SEL	Select the alpha parameter of the EMA (IIR) filter	0	0	0	2	
SPC_RX_FILT_TIME_INT SPC_RX_FILT_TIME_FRACT	Filtered SPC trigger pulse: Min pulse tick time = (8* SPC_RX_FILT_TIME_INT + SPC_RX_FILT_TIME_FRACT)/8	N/A	6 0	N/A	4	
SPC_BLANKING_TIME	SPC blanking time (= 5+2*SPC_BLANKING_TIME tick) in case of invalid SPC -ID pulse detected, counted from the rising edge of the trigger pulse. Any other (parasitic) pulse occurring during that time will be ignored.	N/A	0	N/A	2	

LINEAR TRANSFER CHARACTERISTIC

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
DP	DSP discontinuity point: New Angle = Angle - DP		0	0	16	
CW	Magnet rotation direction, see section 14.2.2	0	0	0	1	
4POINTS	Enable 4 points PWL linearization	0	0	0	1	
DSP_LNR_RESX2	Enable a doubled LNR method 0: 4-points or 16-segments 1: 8-points or 32-segments	0	0	0	1	
WORK_RANGE_GAIN	Post DSP Gain stage, applied just before linearization, details see section 14.2.9	16	16	16	8	
GAIN_ANCHOR_MID	Select 50 % position as anchor point Post DSP Gain stage	1	1	1	1	
USEROPTION_SCALING	Enables output scaling x2 0 = [0100%] 1 = [-50%150%]	1	1	1	1	
LNR_S0	4-pts - Slope coefficient before reference point A	N/A	N/A	N/A	16	
LNR_A_X, LNR_B_X, LNR_C_X, LNR_D_X	4-pts - X Coordinate for reference points A,B,C,D	N/A	N/A	N/A	16	
LNR_A_Y, LNR_B_Y, LNR_C_Y, LNR_D_Y	4-pts - Y Coordinate for reference points A,B,C,D	N/A	N/A	N/A	16	
LNR_A_S, LNR_B_S, LNR_C_S, LNR_D_S	4-pts - Slope coefficient for reference points A,B,C,D	N/A	N/A	N/A	16	
LNR_Y00	17-pts / 16 segments - Y coordinate point 0	0x4009	0x4009	0x4CCD	16	
LNR_Y01	17-pts / 16 segments - Y coordinate point 1	0x4804	0x4804	0x5334	16	
LNR_Y02	17-pts / 16 segments - Y coordinate point 2	0x5000	0x5000	0x599A	16	
LNR_Y03	17-pts / 16 segments - Y coordinate point 3	0x57FC	0x57FC	0x6000	16	
LNR_Y04	17-pts / 16 segments - Y coordinate point 4	0x5FF8	0x5FF8	0x6667	16	
LNR_Y05	17-pts / 16 segments - Y coordinate point 5	0x67F4	0x67F4	0x6CCD	16	
LNR_Y06	17-pts / 16 segments - Y coordinate point 6	0x6FF0	0x6FF0	0x7334	16	
LNR_Y07	17-pts / 16 segments - Y coordinate point 7	0x77EC	0x77EC	0x799A	16	
LNR_Y08	17-pts / 16 segments - Y coordinate point 8	0x7FE8	0x7FE8	0x8000	16	
LNR_Y09	17-pts / 16 segments - Y coordinate point 9	0x87E4	0x87E4	0x8667	16	
LNR_Y10	17-pts / 16 segments - Y coordinate point 10	0x8FE0	0x8FE0	0x8CCD	16	

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
LNR_Y11	17-pts / 16 segments - Y coordinate point 11	0x97DC	0x97DC	0x9333	16	
LNR_Y12	17-pts / 16 segments - Y coordinate point 12	0x9FD8	0x9FD8	0x999A	16	
LNR_Y13	17-pts / 16 segments - Y coordinate point 13	0xA7D4	0xA7D4	0xA000	16	
LNR_Y14	17-pts / 16 segments - Y coordinate point 14	0xAFD0	0xAFD0	0xA667	16	
LNR_Y15	17-pts / 16 segments - Y coordinate point 15	0xB7CC	0xB7CC	0xACCD	16	
LNR_Y16	17-pts / 16 segments - Y coordinate point 16	0xBFC8	0xBFC8	0xB333	16	
LNR_X[0007]	8-pts - X coordinate point 07	N/A	N/A	N/A	16	
LNR_DELTA_Y[0032]	33-pts / 32 segments - Delta Y coordinate point 032	N/A	N/A	N/A	8	
LNR_DELTA_Y_EXPAND_L OG2	Adjust the span of 32 segments NV_LNR_DELTA_Y{n} offsets	0	0	0	2	
CLAMPLOW	Low clamping value of angle output data	16	16	32767	16	
CLAMPHIGH	High clamping value of angle output data	65408	65408	32767	16	
OUTSLOPE_SEL	Possible output offset correction within the post-DSP chain: 0: disabled (default) 1: enabled, applied after discontinuity point stage 2: enabled, applied before clamping stage 3: disabled (unused)	0	0	0	2	
OUTSLOPE_COLD	Slope coefficient at cold of the programmable temperature-dependent offset. Used only if NV_OUTSLOPE_SEL enabled	0	0	0	8	
OUTSLOPE_HOT	Slope coefficient at hot of the programmable temperature-dependent offset. Used only if NV_OUTSLOPE_SEL enabled	0	0	0	8	
	DIAGNOSTICS					
DIAG_GLOBAL_EN	Diagnostics global enable. Do not modify! (see section 15.2 Safety Mechanisms)	1	1	1	1	
DIAG_TEMP_THR_LOW	Temperature threshold & limiter for lower-temperature diagnostic. Default=08 -> -57 deg.C	8	8	8	8	
DIAG_TEMP_THR_HIGH	Temperature threshold & limiter for over-temperature diagnostic. Default=128 -> 183 deg.C	128	128	128	8	

		Default Values				
Parameter	Parameter Description		SPC	Analog /PWM	#bits	
DIAG_FIELDTOOLOWTH RES	Field strength limit under which a fault is reported. (see 14.5.4)	6	6	0	8	
DIAG_FIELDTOOHIGHTH RES	Field strength limit over which a fault is reported. (see 14.5.4)	255	255	255	8	
DIAG_DEBOUNCE_STEP DOWN	Diagnostic debouncing stepdown time used for recovery time setting	1	1	1	4	
DIAG_DEBOUNCE_STEP UP	Diagnostic debouncing stepup time used for hold time setting	1	1	1	4	
DIAG_DEBOUNCE_THRE SH	Diagnostic debouncing threshold	1	1	1	6	
COLD_SAFE_STARTUP_E N	Normal (0) or safe start-up (1) after power-on reset	0	0	0	1	
OUT_ALWAYS_HIGHZ	Forces the OUT pin in high-Z mode (for test mode, Do not modify!)	0	0	0	1	
SENT_REPORT_MODE_ ANA	1: Enables the error message within SENT/SPC frame in ANA diagnostic mode. See DIAG_FAULT_CODE	0	0	N/A	2	
DIAG_FAULT_CODE	Defines the error message = DIAG_FAULT_CODE + FF9	6	6	N/A	3	
DAC_REPORT_MODE_A NA	Defines the DAC state in analog-fault report mode	N/A	N/A	0	2	
SENT_INIT_GM	Initialization frame definition until first valid data 0: 000 1: DIAG_FAULT_CODE + FF9	0	0	N/A	1	
SPC_SCN_INIT	SCN nibble Initialization contents until first valid data	N/A	0	N/A	0	
OUT_DIAG_HIZ_TIME	Output Digital failure (HiZ) recovery time. = 6 + OUT_DIAG_HIZ_TIME ms	0	0	0	5	
	OUTPUT CONFIGURATIONS					
PROTOCOL	O: SENT without pause 1: PWM 2: SENT with pause 3: SPC (with or without ID) 4: Analog output 5: SENT-B (SENT rev 5) - reserved for future use	2	3	4	3	
ABE_OUT_MODE	HW backend output-amplifier mode selection 0: Analog output (12 bit)		4	0	3	

		Default Values				
Parameter	Description			Analog		
		SENT	SPC	/PWM	#bits	
ABE_DAC_SEQ_BYPASS	DAC sequencer bypass option	0	0	1	1	
DAC_SEQ_LUT_SEL	DAC Sequence LUT, default for 3µs tick time. Do not modify!	6	1	N/A	4	
NV_DAC_SEQ_CLK_DIV	DAC Sequence LUT, default for 3µs tick time. Do not modify!	0	0	N/A	3	
NIBBLE_PULSE_CONFIG	Sets the SENT nibble high/low-time configuration 2: 5 fixed ticks low time (Default) 3: 6 fixed ticks high time	2	2	N/A	2	
SPC_PP_OPTION	SPC push-pull and high-Z switching option 0: switch on Push-pull mode @ SPC_OUT_ON_TH, switch it off @ SPC_OUT_OFF_TH (PROTOCOL = 3) 1: switch on Push-pull mode @ SPC_OUT_ON_TH, switch it off right after the last rising edge of the pause pulse. (PROTOCOL = 3) 2: Permanent High-Z (do not use) 3: Permanent state defined by NV_ABE_OUT_MODE (to be used for analog, PWM & SENT)	0	0	3	2	
SPC_OUT_ON_TH	Tick delay between the SPC trigger falling edge and the output mode switch: open-drain -> push-pull. Note: tmlowSPC - SPC_RX_FILT_TIME_INT < SPC_OUT_ON_TH < 90	0x32	0x32	N/A	9	
SPC_OUT_OFF_TH	Tick delay between the SPC trigger falling edge (filtered) and the output mode switch: pushpull -> open-drain.	450	450	N/A	9	
	PWM PROTOCOL OPTIONS					
PWM_POL	Invert the PWM polarity 0: PWM Period start = falling edge , % DC active low	2	N/A	N/A	2	
PWM_REPORT_MODE_ ANA	Error message within PWM frame 0x0: PWM DC_FAULT 0x1: HiZ 0x2: Vss 0x3: VdD	N/A	N/A	0	2	
PWM DC_FAULT	PWM Duty Cycle in case of Fault	N/A	N/A	N/A	8	
PWM DC_ FIELDTOOLOW	PWM Duty Cycle in case of Field Strength Too Low	N/A	N/A	N/A	8	
	SPC PROTOCOL OPTIONS					
SENT_TICK_TIME	SPC mode	N/A	3	N/A	3	
REVISION 003 – December 22, 2021				Page 54 of	102	

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
SPC_ID_EN	0: SPC without ID selection 1: SPC with ID selection. See SPC_CHIP_ID (default)	N/A	1	N/A	1	
SPC_CHIP_ID	SPC trigger ID upon which the SENT response will be transmitted on the bus.	N/A	0: Die1 1: Die2	N/A	2	
SPC_MEAS_ID	SPC trigger ID upon which the ADC measurement will be done	N/A	1	N/A	2	
SERIAL_CONFIG	1: NSP 2: SSP 3: ESP		1 (42)	N/A	2	
ID_IN_STATUS	Enable SPC ID in SCN (status and communication nibble)	N/A	1	N/A	1	
SPC_SCN_BIT_ORDER	Enables SCN bit order according to SPC 1: [b3:2] = Error indication , [b1:0] = SPC_CHIP_ID	N/A	1	N/A	1	
SPC_TRIGGER_MODE	SPC trigger pulse treatment mode: 0: Synchronous Transmission Mode 1: Bus mode with constant length trigger pulse (default)	N/A	1	N/A	2	
SPC_FORMAT	SPC frame sequence: 8: see SENT_FC_FORMAT[2:0]	8	0	N/A	4	
SPC_FC_CSUM_CFG	Fast-channel checksum calculation method 0: checksum in line with SAE J2716 (default) 1: Method "O" in line with SPC2014 Specification 2: Method "E" in line with SPC2014 Specification	N/A	0	N/A	2	
SENT_LEGACY_CRC	Enable legacy CRC calculation 0: The SAE J2716 recommended CRC is calculated	0	0	N/A	1	
STATUS_IN_CRC	1: Add SCN in checksum calculation	0	1	N/A	1	
SPC_CSUM_MODE	Checksum nibble calculation mode in SPC: 0: checksum only (default) 1: Add ID in checksum 2: Add ID & RC in checksum	N/A	0	N/A	2	
SPC_BLANK_SENT_FRA ME	reserve	N/A	0	N/A	1	
SPC_TRIG_TH	Delay between the filtered SPC trigger falling edge and the ADC start of sequence, given in number of tick.	N/A	0	N/A	9	

⁴² Used for SCN configuration, **do not modify!** See parameter "ID_IN_STATUS". 2 bits are overlaid with parameter "SPC_CHIP_ID".

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
	SENT PROTOCOL OPTIONS					
SENT_TICK_TIME	Normal SENT low power mode	3	N/A	N/A	3	
SENT_FC_FORMAT	SENT format option (only if SPC_FORMAT = 8) 1: Format H.1 (A.1, Two 12-bit Fast Channels) 2: Format H.2 (One 12-bit Fast Channel, 3 x 4 bit) 3: Format H.3 (One 12-bit fast channel, 4 x 3 bit) 4: Format H.4 (A.3, 12-bit Fast Channel & Single secure) 5: Format H.5 (12-bit Fast Channel & zero values) 6: Format H.6 (14-bit Fast Channel & 10-bit Fast Channel2) 7: Format H.7 (16-bit Fast Channel & 8-bit Fast Channel2)	4	N/A	N/A	3	
SENT_FC_FORMAT_EN	SENT format enable	1	0	N/A	1	
TWO_ANGLES_FRAME	Enable 2 fields measure per output frame (SENT with pulse)	1	N/A	N/A	1	
T_FRAME	SENT w/ PP frame length PWM period (4µs/LSB)	320	N/A	N/A	12	
T_SYNC_DELAY	SENT - ADC synchronization delay - used in SENT-with-pause only	27	N/A	N/A	12	
SENT_FAST_CHANNEL_ 2	Definition of data transmitted in the SENT fast channel 2 in case SENT_FC_FORMAT=1, 6 or 7 SENT_FAST_CHANNEL_ 0 Temperature sensor (SP ID 0x23)		N/A	N/A	2	
SENT_SLOW_EXTENDED	ESM length configuration	0	N/A	N/A	1	
SENT_SLOW_EXTENSION	ESM length configuration	0	N/A	N/A	2	
SENT_DIAG_STRICT	ESM length configuration	0	N/A	N/A	1	
	SERIAL MESSAGE CONFIGURAT	TION				
SENT_SENSOR_TYPE	Part of SSM/ESM : Channel 1/2 sensor type	0x050	0x050	N/A	12	
SENT_MAN_CODE	Part of SSM/ESM: Manufacturer code	0x000	0x000	N/A	12	
SENT_REV	Part of SSM/ESM: SENT standard revision	0x4	0x4	N/A	4	
SENT_CHANNEL_X1	Part of SSM/ESM: Fast-channel 1 - X1	0	0	N/A	12	
SENT_CHANNEL_X2	Part of SSM/ESM: Fast-channel 1 - X2	0	N/A	N/A	12	
SENT_CHANNEL_Y1	Part of SSM/ESM: Fast-channel 1 - Y1	0	N/A	N/A	12	

		Default Values				
Parameter	Description	SENT	SPC	Analog /PWM	#bits	
SENT_CHANNEL_Y2	Part of SSM/ESM: Fast-channel 1 - Y2	0	N/A	N/A	12	
SENT_SENSOR_ID1	Part of SSM/ESM : Sensor ID-1	0	N/A	N/A	12	
SENT_SENSOR_ID2	Part of SSM/ESM : Sensor ID-2	0	N/A	N/A	12	
SENT_SENSOR_ID3	Part of SSM/ESM : Sensor ID-3	0	N/A	N/A	12	
SENT_SENSOR_ID4	Part of SSM/ESM : Sensor ID-4	0	N/A	N/A	12	
SENT_OEM_CODE1	Part of SSM/ESM : OEM code 1	0	N/A	N/A	12	
SENT_OEM_CODE2	Part of SSM/ESM : OEM code 2	0	N/A	N/A	12	
SENT_OEM_CODE3	Part of SSM/ESM : OEM code 3	0	N/A	N/A	12	
SENT_OEM_CODE4	Part of SSM/ESM : OEM code 4	0	N/A	N/A	12	
SENT_OEM_CODE5	Part of SSM/ESM : OEM code 5	0	N/A	N/A	12	
SENT_OEM_CODE6	Part of SSM/ESM : OEM code 6	0	N/A	N/A	12	
SENT_OEM_CODE7	Part of SSM/ESM : OEM code 7	0	N/A	N/A	12	
SENT_OEM_CODE8	Part of SSM/ESM : OEM code 8	0	N/A	N/A	12	

Table 49 - MLX90377 End-User Programmable Items Table

Performances described in this document are only achieved by adequate programming of the device. To ensure desired functionality, Melexis recommends following its programming guide and to contact its technical or application service.

13. End User Identification Items

Parameter	Description	Default Values		
Parameter	Description	Analog SEN	#bits	
USER_ID0	Bin1 from production test, can also be reserved for end-user to program information to keep traceability	1	8	
USER_ID1	Reserve for end-user to program information to keep traceability	N/A	8	
USER_ID2	Reserve for end-user to program information to keep traceability	0x20	8	
USER_ID3	Reserve for end-user to program information to keep traceability	N/A	8	
USER_ID4	Reserve for end-user to program information to keep traceability	N/A	8	
USER_ID5	Reserve for end-user to program information to keep traceability	N/A	8	
IMC_VERSION	 IMC / application type: 0: Sun (rotary stray field robust low field variant) 1: Clover (standard/legacy) 2: Dual-disk (linear stray field robust) 4: Bubble (rotary stray field robust high field variant) 	0 for -1xx order code 1 for -3xx order code 2 for -2xx order code 4 for -5xx order code	6	
TEST_STATUS	Bin 1 verification bit	1	1	
MLX_ID0	X-Y position on the wafer (8 bit each)	MLX	16	
MLX_ID1	Wafer ID [b1511] Lot ID [b100]	MLX	16	
MLX_ID2	Fab ID (4 bits) Test Database ID (6 bits)	MLX	16	

Table 50 - Melexis and Customer ID fields description

User identification numbers (48 bits) are freely usable by customers for traceability purpose. Other IDs are read only.

14. Description of End-User Programmable Items

14.1. Output Modes

14.1.1. OUT mode

Output Stage mode (outside fail-safe state) in application can be defined by the parameters "ABE_OUT_MODE" and "ABE_DAC_SEQ_BYPASS":

ABE_OUT_MODE	ABE_DAC_SEQ_BYPASS	Description	Comments
0	1	Analog output (12-bit DAC)	
1	1	Digital output with open-drain-Nmos	Requires a pull-up resistor on output.
2	1	Digital output with open-drain-Pmos	Requires a pull-down resistor on output.
3	1	Digital output with Push-Pull	
4	0	Digital output with improved emission	

Table 51 - Output Mode Selection

14.1.2. Digital OUT protocol

The measurement timing mode and the corresponding output protocol can be selected by the parameter "PROTOCOL":

PROTOCOL	Descriptions
0	Continuous asynchronous angle acquisition, SENT without pause
1	Continuous asynchronous angle acquisition, PWM
2	Continuous synchronous angle acquisition, SENT with pause
3	master-triggered angle transmission, SPC (with or without ID)
4	continuous asynchronous angle acquisition, analog output (DAC)

Table 52 - Protocol Selection

14.1.3. Serial Channel Configuration

Slow Channel configuration can be done by the parameter "SERIAL CONFIG":

SERIAL_CONFIG	Descriptions
0	Slow Channel isn't present, the whole nibble is skipped => violating the protocol. Do not use.
1	No serial message
2	Short serial message
3	Enhanced serial message

Table 53 - SENT Serial channel Configuration

14.1.4. PWM Output Mode

If PWM output mode is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). The PWM polarity is selected by the parameter "PWM_POL":

- PWM_POL = 0 for a low level at 100%
- PWM_POL = 1 for a high level at 100%

The PWM frequency is selected in the range [100, 2000] Hz by the T_FRAME parameter (12bits), defining the period time in the range [0.5; 10] ms. Minimum allowed value for T_FRAME is therefore 125 (0x7d).

$$T_{PWM} = \frac{4}{10^6} \times T_FRAME$$

The PWM period is subject to the same tolerances as the main clock (see ΔT_{ck}).

14.1.5. SPC Frame Formats

The SPC frame formats (see section 11.4.1) can be defined by the parameter "SPC_FORMATS", with the following overview:

Figure 26 – SPC Frame Format details

14.2. Output Transfer Characteristic

Figure 27 gives the simplified digital signal processing chain from the position after ADC to the output. This section explains the compensation capability of the IC. The remainder of this chapter explains every parameter in more detail.

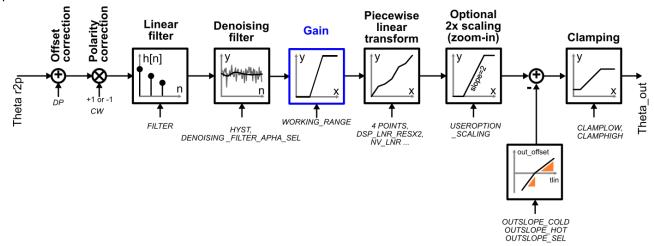


Figure 27 – A Digital Signal Process Chain from ADC to the Output of MLX90377

There are 4 different possibilities to define the transfer function (LNR) as specified in the Table 54.

- With 4 arbitrary points (defined by X and Y coordinates) and 5 slopes
- With 8 arbitrary points (defined by X and Y coordinates)
- With 17 equidistant points for which only the Y coordinates are defined
- With 32 equidistant points for which only offset of Y compared to the average value is defined

Output Transfer Characteristic	4 Points	DSP_LNR_RESX2
4 Arbitrary Points	1	0
8 Arbitrary Points	1	1
17 Equidistant Points	0	0
32 Equidistant Points	0	1

Table 54 - Output Transfer Characteristic Selection Table

Parameter	LNR type	Value	Unit
CW	All	0 → counterclockwise 1 → clockwise	LSB
DP	All	0 359.9999	deg
LNR_A_X LNR_B_X LNR_C_X LNR_D_X	4 pts, X coordinates	0 359.9999	deg

Parameter	LNR type	Value	Unit
LNR_A_Y LNR_B_Y LNR_C_Y LNR_D_Y	4 pts, Y coordinates	0 100 -50 + 150	%
LNR_SO LNR_A_S LNR_B_S LNR_C_S LNR_D_S	4 pts, slopes	-17 0 17	%/deg
LNR_X00X07	8 pts, X coordinates	0 359.9999	deg
LNR_Y00Y16	8,17 pts, Y coordinates	0100 -50 + 150	%
LNN_DELTA_Y00Y32	33 pts offsets	+/-3.125% +/-6.25% +/-12.5% +/-25%	%
WORKING RANGE	17/33 pts	65.5 360 32.75 180	deg
CLAMPLOW	All	0 100	%
CLAMPHIGH	All	0 100	%

Table 55 - Output linearization and clamping parameters

14.2.1. Enable scaling Parameter

This parameter enables to double the scale of Y coordinates linearisation parameters from [0 .. 100]% to [-50 .. 150]% according to the following table (Table 56). This is valid for all linearisation schemes except the 32 points.

USEROPTION_SCALING	LNR_Y min value	LNR_Y max value
0	0%	100%
1	-50%	150%

Table 56 - USEROPTION_SCALING parameter

14.2.2. CW (Clockwise) Parameter

The CW parameter defines the magnet rotation direction.

- 0 or counter clockwise is the defined by 1-4-5-8 pin order direction for the SOIC-8 package, 1-8-9-16 pin order direction for the TSSOP-16 package, 1-2-3-4 pin order direction for the DMP-4 package, 1-2-3 pin order direction for the SMP-3 package;
- 1 or clockwise is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC-8 package, 16-9-8-1 pin order direction for the TSSOP-16 package, 4-3-2-1 pin order direction for the DMP-4 package, 3-2-1 pin order direction for the SMP-3 package.

Refer to the drawing in the sensitive spot positioning section (19.1.4, 19.2.4, 19.3.6).

14.2.3. Discontinuity Point (or Zero Degree Point)

The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements.

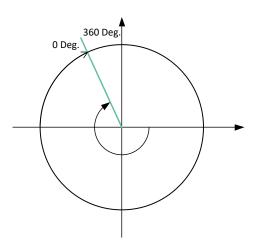


Figure 28 - Discontinuity Point Positioning

14.2.4. 4-pts LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90377 4-pts transfer function from the digital angle value to the digital output is described in Figure 29. Seven segments can be programmed but the clamping levels are always flat.

Two to six calibration points are available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or more calibration points will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a lower cost calibration set-up and shorter calibration time.

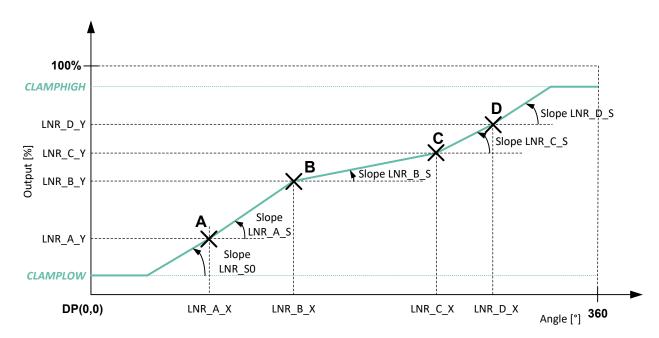


Figure 29 – 4-pts Linearization Parameters Description

14.2.5. 8-pts LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90377 8-pts transfer function from the digital angle value to the output voltage is described in Figure 30 $^{(43)}$. Eight calibration points [LNR_X0...7, LNR_Y0...7] together with 2 fixed points at the extremity of the range ([0°, 0%]; [360°, 100%]) divides the transfer curve into 9 segments. Each segment is defined by 2 points and the values in between is calculated by linear interpolation.

 $^{^{43}}$ Applications with maximal operation range of 360°, i.e. ordering code of -2xx/-3xx, shown as example. Applications with maximal operation range of 180°, i.e. ordering code of -1xx/-5xx, can be scaled accordingly.

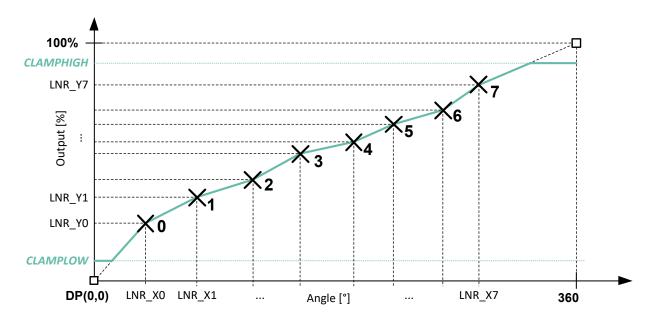


Figure 30 – 8-pts Linearization Parameters Description

14.2.6. 17-pts LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90377 17-pts transfer function from the digital angle value to the output voltage is described in Figure 31 ⁽⁴³⁾. In the 17-pts mode, the output transfer characteristic is Piece-Wise-Linear (PWL).

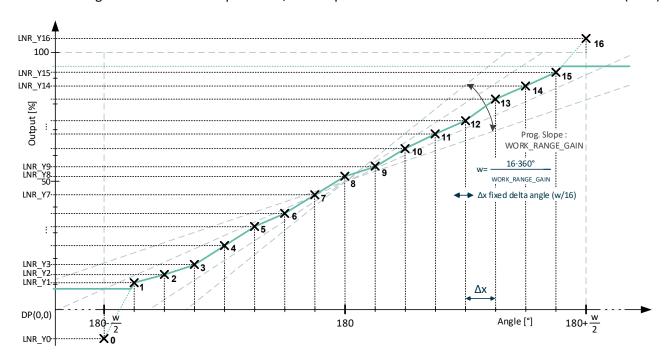


Figure 31 – 17-pts Linearization Parameters Description

All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values.

Between two consecutive points, the output characteristic is interpolated.

14.2.7. 33-pts LNR parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90377 33-pts transfer function from the digital angle value to the output voltage is described in Figure 32 ⁽⁴³⁾ below. In the 33-pts mode, the output transfer characteristic is Piece-Wise-Linear (PWL).

The points are spread evenly across the working range (see sections 14.2.8 and 14.2.9 for working range selection). The Y-coordinates can be offset from the ideal characteristic within an adjustable range defined by LNR_DELTA_Y_EXPAND_LOG2. The available values are summarized in Table 57. All LNR_delta_Y## parameters are encoded in a fractional signed 8-bit value.

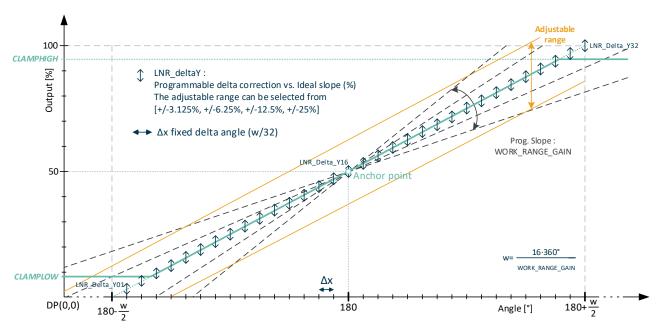


Figure 32 – 33-pts Linearization Parameters Description

LNR_DELTA_Y_EXP AND_LOG2	Adjustable Range	Correction resolution
0	±3.125%	0.024%
1	±6.25%	0.049%
2	±12.5%	0.098%
3	±25%	0.20%

Table 57 - LRN_DELTA_Y_EXPAND_LOG2 values and correction resolution

14.2.8. WORK_RANGE Parameter for Angle Range Selection

The parameter WORK_RANGE determines the input range on which the 16 or 32 segments are uniformly spread. This parameter is provided for compatibility with former versions of Melexis Triaxis sensors. For full featured working range selection, see 14.2.9. For WORK_RANGE parameter, following table applies.

WORK_RANGE	Range	Δx 17pts	Δx 32pts	WORK_RANGE	Range	Δx 17pts	Δx 32pts
0	180.0°	11.3°	5.6°	8	90.0°	5.6°	2.8°
1	160.0°	10.0°	5.0°	9	72.0°	4.5°	2.3°
2	144.0°	9.0°	4.5°	10	60.0°	3.8°	1.9°
3	131°	8.2°	4.1°	11	51.45°	3.2°	1.6°
4	120.0°	7.5°	3.8°	12	45.0°	2.8°	1.4°
5	221.5°	6.9°	3.5°	13	40.0°	2.5°	1.3°
6	103°	6.4°	3.2°	14	36.0°	2.3°	1.1°
7	96°	6.0°	3.0°	15	32.75°	2.0°	1.0°

Table 58 - Work range for 180° periodicity (ordering code -1xx, -5xx)

WORK_RANGE	Range	Δx 17pts	Δx 32pts	WORK_RANGE	Range	Δx 17pts	Δx 32pts
0	360.0°	22.5°	11.3°	8	180.0°	11.3°	5.6°
1	320.0°	20.0°	10.0°	9	144.0°	9.0°	4.5°
2	288.0°	18.0°	9.0°	10	120.0°	7.5°	3.8°
3	261.8°	16.4°	8.2°	11	102.9°	6.4°	3.2°
4	240.0°	15.0°	7.5°	12	90.0°	5.6°	2.8°
5	221.5°	13.8°	6.9°	13	80.0°	5.0°	2.5°
6	205.7°	12.9°	6.4°	14	72.0°	4.5°	2.3°
7	192.0°	12.0°	6.0°	15	65.5°	4.1°	2.0°

Table 59 - Work range for 360° periodicity (ordering code -2xx, -3xx)

Outside of the selected range, the output will remain at clamping levels.

14.2.9. WORK_RANGE_GAIN Parameter for Angle Range Selection

Alternatively, the range for the angle can be selected using the WORK_RANGE_GAIN parameter, which applies a fixed gain to the transfer characteristics. WORK_RANGE_GAIN is coded on 8 bits where the 4 MSB defines the integer part and the 4 LSB the fractional part (in power of twos). Therefore, the following equation applies to define the angle range w:

$$w = \frac{16 * MaxRange}{WORK_RANGE_GAIN}$$

MaxRange depends on the application. It is 360° for ordering code -2xx / -3xx, and 180° for ordering code -1xx / -5xx (rotary stray-field immune). Both minimal and maximal angles are then defined by:

$$\theta_{min} = \frac{MaxRange - w}{2}$$
; $\theta_{max} = \frac{MaxiRange + w}{2}$

where θ_{min} corresponds to the angle yielding 0% output and θ_{max} the angle giving a 100% output.

Using WORK_RANGE_GAIN parameter, the anchor point is kept at *MaxRange*/2 and the range is symmetrically set around this value. It creates a zoom-in of the angle around this point.

Following tables give some values as example:

WORK_RANGE_GAIN	Factor	Range (w)	θmin	θmax	Δx 17pts	Δx 32pts
0x10	1	180°	0°	180°	11.25°	5.63°
0x20	2	90°	45°	135°	5.63°	2.81°
0x40	4	45°	67.5°	112.5°	2.81°	1.41°
0xFF	15.94	11.3°	78.7°	101.3°	0.71°	0.35°

Table 60 - Working range defined by WORK RANGE GAIN parameter (ordering code -1xx, -5xx)

WORK_RANGE_GAIN	Factor	Range (w)	θmin	θmax	Δx 17pts	Δx 32pts
0x10	1	360°	0°	360°	22.5°	11.3°
0x20	2	180°	90°	270°	11.3°	5.6°
0x40	4	90°	135°	225°	5.6°	2.8°
0xFF	15.94	22.6°	168.7°	191.3°	1.41°	0.71°

Table 61 - Working range defined by WORK RANGE GAIN parameter (ordering code -2xx, -3xx)

Outside of the working range, the output will remain at clamping levels.

14.2.10. Thermal OUTSLOPE offset correction

Two parameters, OUTSLOPEHOT and OUTSLOPECOLD, are used to add a temperature dependent offset. This feature is enabled by the parameter OUTSLOPE_SEL that apply this modification either directly to the angle or after the linearisation function. The MLX90377 uses its internal linearized temperature to compute the offset shift as depicted in the figure below (Figure 33).

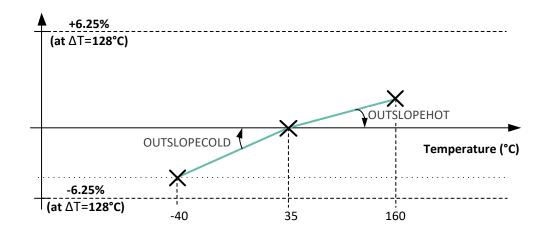


Figure 33 - Temperature compensated offset

The thermal offset can be added or subtracted to the output, before the clamping. The span of this offset is $\pm 6.25\%$ of the full output scale for a temperature difference of 128° C. The added thermal offset varies with temperature following the equations below. The two thermal coefficients are encoded in signed two's complement 8bit format (-128..127) and defined separately below 35°C (OUTSLOPECOLD) and above 35°C (OUTSLOPEHOT).

OUTSLOPE_SEL	Description
0	No thermal offset correction
1	Thermal offset enabled, applied after angle calculation, i.e. after discontinuity point (θ_{r2p})
2	Enabled, applied after output calculation and before clamping $(heta_{out})$

Table 62 - Temperature compensated offset selection parameter

If IC internal temperature is higher than 35°C then:

$$\theta_{Tcomp} = \theta_{in} - \Delta T \cdot \text{OUTSLOPEHOT}$$

If IC internal temperature is lower than 35°C then:

$$\theta_{Tcomp} = \theta_{in} - \Delta T \cdot \text{OUTSLOPECOLD}$$

where θ_{in} is either θ_{r2p} or θ_{out} depending on OUSLOPE_SEL value.

14.2.11. CLAMPING Parameters

The clamping levels are two independent values to limit the output voltage range. The CLAMPLOW parameter adjusts the minimum output level. The CLAMPHIGH parameter sets the maximum output. Both parameters have 16 bits of adjustment and are available for all four LNR modes. As output data resolution is limited to 12 bits, both in SENT and in PWM, the 4 LSB of this parameter will have no significant effect on the output. The value is encoded in fractional code, from 0% to 100%

14.3. Sensor Front-End

Parameter	Value
SENSING MODE	[07]
GAINMIN	[063]
GAINMAX	[063]
GAINSATURATION	[0, 1]

Table 63 - Sensing Mode and Front-End Configuration

14.3.1. SENSING MODE

The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle. The different possibilities are described in the tables below. This 3-bit value selects the first (B1) and second (B2) field components according to the Table 64 content.

MAPXYZ	B1	В2	Angular
0	Χ	Υ	Rotary position stray-field Immune, order code -1xx and -5xx
1	Х	Υ	X-Y Angular Rotary, order code -3xx
2	Υ	Z	Y-Z Angular Rotary, order code -3xx
3	X	Z	X-Z Angular Rotary, order code -3xx
4	ΔΧ	ΔΖ	Linear position, stray-field Immune, order code -2xx

Table 64 - Sensing Mode Description

14.3.2. GAINMIN and GAINMAX Parameters

GAINMIN and GAINMAX define the thresholds on the gain code outside which the fault "GAIN out of Spec." is reported. If GAINSATURATION is set, then the virtual gain code is clamped at GAINMIN and GAINMAX, and no diagnostic fault will be set since the clamping will prevent the gain from exceeding GAINMIN and GAINMAX.

14.4. Filtering

The MLX90377 includes 2 types of filters:

- Exponential moving average (EMA) Filter: programmable by the HYST parameter
- Low Pass FIR Filters controlled with the FILTER parameter

Parameter	Value		
DSP_FILTER	0 2		
HYST	0 255		

Table 65 - Filtering configuration

14.4.1. Exponential Moving Average (IIR) Filter

The HYST parameter is a hysteresis threshold to activate / de-activate the exponential moving average filter. The output value of the IC is updated with the applied filter when the digital step is smaller than the programmed HYST parameter value. The output value is updated without applying the filter when the increment is bigger than the hysteresis. The filter reduces therefore the noise but still allows a fast step response for bigger angle changes. The hysteresis must be programmed to a value close to the internal magnetic angle noise level $(1LSB = 8 \cdot MaxRange/2^{16})^{(44)}$.

⁴⁴ For the definition of MaxRange, see section 14.2.9.

$$y_n = a * x_n + (1-a) * y_{n-i}$$
 $x_n = Angle$
 $y_n = Output$

The filters characteristic is given in the following table (Table 66):

DENOISING_FILTER_ALPHA_SEL	0	1	2	3
Coefficients a	0.75	0.5	0.25	0.125
Efficiency RMS (dB)		2.4	4.2	

Table 66 - IIR Filter characteristics

14.4.2. FIR Filters

The MLX90377 features 2 FIR filter modes controlled with Filter = 1...2. Filter = 0 corresponds to no filtering. The transfer function is described by:

$$y_n = \frac{1}{\sum_{i=0}^{j} a_i} \sum_{i=0}^{j} a_i x_{n-i}$$

This filter characteristic is given in the Table 67.

FILTER value	0	1	2
Туре	Disable	Finite Impulse	e Response (FIR)
Coefficients a _i	1	11	1111
Title	No filter	Extra light	Light
DSP cycles (#taps)	1	2	4
Efficiency RMS (dB)	0	3.0	6.0

Table 67 - FIR Filter Characteristics

14.5. Programmable Diagnostics Settings

14.5.1. Diagnostics Global Enable

DIAG_EN must be kept to its default value (1) to retain all functional safety abilities of the MLX90377. This feature shall not be disabled.

14.5.2. Diagnostic Debouncer

A debouncing algorithm is available for analog diagnostic reporting. Enabling this debouncer will increase the FHTI of the device. Therefore, Melexis recommends keeping the debouncing of analog faults off, by not modifying below described values. The factory default settings mentioned in chapter 12 should be used.

NVRAM Parameter	Description
DIAGDEBOUNCE_STEPDOWN	Decrement values for debouncer counter
DIAGDEBOUNCE_STEPUP	Increment value for debouncer counter
DIAG_DEBOUNCE_THRESH	Threshold for debouncer counter to enter diagnostic mode

Table 68 - Diagnostic debouncing parameters

Once an analog monitor detects an error, it takes control of the debouncing counter. This counter will be incremented by STEPUP value each time this specific monitor is evaluated and the error is still present. When the debouncing counter reaches the value defined by DEBOUNCE_THRESH, an error is reported on the error channel, and the debouncing counter stays clamped to this DEBOUNCE_THRESH value (see section 11.3.8 for SENT error message codes, and 14.5.5 for PWM error reporting). Once the error disappears, each time its monitor is evaluated, the debouncing counter is decremented by STEPDOWN value. When the debouncing counter reaches zero, the error disappears from the reporting channel and the debouncing counter is released. To implement proper reporting times, one should refer to the FHTI, see chapter 15.3. The reporting and recovery time are defined in the table below (valid for THRESH≠0).

Parameter	Min	Max
Reporting Time	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil - 1 \right)$	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil \right)$
Recovery Time	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil \right)$	$DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil + 1 \right)$
	$\left\lceil \frac{x}{y} \right\rceil$	is the ceiling function of x divided by y

Table 69 - Diagnostic Reporting and Recovery times

14.5.3. Over/Under Temperature Diagnostic

DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} . DIAG_TEMP_THR_LOW defines the threshold for under temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} .

T_{LIN} is encoded using the SENT standard for temperature sensor. One can get the physical temperature of the die using following formula:

Datasheet

$$T_{PHY}[^{\circ}C] = \frac{T_{LIN}}{8} - 73.15$$

DIAG_TEMP_THR_LOW/HIGH are encoded on 8-bit unsigned values with the following relationship towards T_{Lin}

$$DIAG_TEMP_THR_(LOW/HIGH) = \frac{T_{LIN}}{16}$$

The value of T_{LIN} is clamped between the thresholds defined by DIAG_TEMP_THR_LOW and DIAG_TEMP_THR_HIGH.

Following table summarizes the characteristics of the linearized temperature sensor and the encoding of the temperature monitor thresholds.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
T _{LIN} resolution	Res _{TLIN}	-	0.125	-	°C/LSB	
T _{LIN} refresh rate	F _{S,TLIN}	-	200	-	Hz	
T _{LIN} linearity error	T_{LinErr}	-8	-	8	°C	from -40 to 160°C
T _{LIN} linearity error	T_{LinErr}	-2	-	6	°C	from 35 to 125°C
High temperature threshold	DIAG_TEMP _THR_LOW	-	8	-	LSB	Recommended value, corresponds to -57°C
Low temperature threshold	DIAG_TEMP _THR_HIGH	-	128	-	LSB	Recommended value, corresponds to 183°C
High/low temperature threshold resolution	Res _{Tthr}		2		°C/LSB	

Table 70 - Linearized Temperature Sensor characteristics

14.5.4. Field Strength and Field Monitoring Diagnostics

Field Strength is compensated over the circuit operating temperature range and represents a reliable image of the field intensity generated by the magnet. Field Strength value is optionally available in SENT secondary fast channel.

14.5.5. PWM Diagnostic

DC_FAULT

This parameter defines the duty-cycle that is present on the PWM output in case of diagnostic reporting.

DC_FIELDTOOLOW

This parameter defines the duty-cycle that is output in case of Field Too Low, from 0% till 100 % by steps of (100/256)%.

15. Functional Safety

15.1. Safety Manual

The safety manual, available upon request, contains the necessary information to integrate the MLX90377 component in a safety related item, as Safety Element Out-of-Context (SEooC).

In particular, it includes:

- The description of the Product Development lifecycle tailored for the Safety Element.
- An extract of the Technical Safety concept.
- The description of Assumptions-of-Use (AoU) of the element with respect to its intended use, including:
 - assumption on the device safe state;
 - assumptions on fault tolerant time interval and multiple-point faults detection interval;
 - assumptions on the context, including its external interfaces;
- The description of safety analysis results (at the device level, to be used for the system integration), HW architectural metrics and description of dependent failures initiators.
- The description and the result of the functional safety assessment process; list of confirmation measures and description of the independency level.

15.2. Safety Mechanisms

The MLX90377 provides numerous self-diagnostic features (safety mechanisms). Those features increase the robustness of the IC functionality either by preventing the IC from providing an erroneous output signal or by reporting the failure according to the SENT protocol definition.

Legend

High coverage

O Medium coverage

ANA: Analog hardware failure reporting, described in the safety manual

High-Z : Special reporting, output is set in high impedance mode (no HW fail-safe mode/timeout, no SW safe startup)

DIG: Digital hardware failure reporting, described in the safety manual

At Startup: HW fault present at time zero is detected before a first frame is transmitted.

DIAG_EN: This safety mechanism can be disabled by setting DIAG_EN = 0 (see chapter 12 End User Programmable Items). This option should not be used in application mode!

Table 71 - Self Diagnostic Legend

MLX90377 Triaxis® Position Sensor IC

Category and safety mechanism name		ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At startup	DIAG EN
Signal-conditioning (AFE, External Sensor) Diagnostic									
Magnetic Signal Conditioning Voltage Test Pattern	•	0	0				ANA	NO	•
Magnetic Signal Conditioning Rough Offset Clipping check	•		0				ANA	NO	•
Magnetic Signal Conditioning Gain Monitor	•		0			•	ANA	YES	•
Magnetic Signal Conditioning Gain Clamping	•		0			•	ANA	YES	•
Mag. Sig. Cond. Failure control by the chopping technique	•						n/a	YES	
External Sensor Sig. Cond. Voltage Valid Range Check	•					•	ANA	YES	•
External Sensor Sig. Cond. Frequency Valid Range Check	•					•	ANA	YES	•
A/D Converter Test Pattern		•					ANA	NO	•
ADC Conversion errors & Overflow Errors		•					ANA	YES	•
Flux Monitor (Specific to Rotary mode)	•	0				•	ANA	NO	•
HE Switching Circuitry Symmetry Check	•						ANA	NO	•
HE Bias Current Supply Monitor	•						ANA	NO	•
Stress Sensor Valid Range Check	•						ANA	YES	•
Digital-circuit Diagnostic									
RAM Parity, 1 bit per 16 bits word, ISO D.2.5.2			•				DIG	YES	•
ROM Parity, 1 bit per 32 bits word, ISO D.2.5.2			•				DIG	YES	•

MLX90377 Triaxis® Position Sensor IC

Datasheet

Category and safety mechanism name		ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At startup	DIAG EN
"NVRAM 16 bits signature (run-time) ISO D.2.4.3, by means of SW CRC-CCITT16"			•				DIG	NO	•
NVRAM Double Error Detection ECC ISO			•				DIG	YES	
Logical Monitoring of program sequence ISO D.2.9.3 via Watchdog "IWD" (cpu clock) ISO D2.9.2			•		0		DIG	NO	•
Watchdog "AWD" (separate clock) ISO D2.9.1			•		0		DIG	YES	
CPU Errors "Invalid Address", "Wrong opcode"			•		0		DIG	YES	
ADC Interface Checksum		•	0				DIG	NO	•
DSP Test Pattern (atan2)			•		0		DIG	NO	•
Critical ports monitoring			•				DIG	NO	•
DSP Overflow	0	0	•				DIG	YES	•
ADC data adder test		0	•				DIG	YES	•
SENT Fall Collision detection (SENT pulse generator)			•				DIG	NO	•
DAC Overflow			•				DIG	NO	•
Communication Interface Diagnostic									
SENT parity check over Configuration registers				•			DIG	NO	•
SENT block: Protection against re-configuration at run-time				•			DIG	NO	•
SENT Frame Counter & Redundant Nibble				•			n/a	n/a	
System-level diagnostic									

MLX90377 Triaxis® Position Sensor IC

Datasheet

Category and safety mechanism name		ADC	DSP	Back- end	Support. Func.	Module & Package	Reporting mode	At startup	DIAG EN
Supply Voltage Monitors (all supply domains) except VS_OV & POR					•	•	ANA	YES	•
External Supply Overvoltage Monitor VS_OV					•	•	High-Z	YES	
Digital Supply under-voltage monitor (Power-on reset)					•	•	High-Z	YES	
Supply Bias Current Monitor					•		ANA	NO	•
Overheating monitor	0	0	0	0	0	•	ANA	YES	•
Warning/Reporting Mechanisms									
HW Error Controller			•	•	•		DIG	YES	
HW Fail-safe mode with timeout			•	•	•		DIG	YES	
Analog-type Error management	•	•			•		ANA	NO	•
Safe start-up mode			•		•		DIG	n/a	
Mechanisms executed at start-up only									
RAM March-C HW Test at start-up			•		•		DIG	YES	

Table 72 - MLX90377 List of Self Diagnostics with Characteristics

15.3. Fault Handling Time Interval

Name	Definition
DTI _{ANA}	Time to run one full analog diagnostic cycle (programmable value)
DTI_{DIG}	Time to run one full nvram BIST cycle (programmable value)
τ_{R}	Output refresh period in analog output mode (see "Timings definition" chapter)
T_{pwm_input}	the period of the incoming PWM signal on gateway pin
$T_{trigger}$	the time between 2 SPC trigger pulses
DTI	Diagnostic Time Interval: worst-case time between 2 consecutive runs of a specific diagnostic
EXE	Execution Time: worst-case time between the measurement start of a given diagnostic and the availability of the result of this measurement
REP	Reporting Time: worst-case time needed between an internal diagnostic error event and a switch of the output to fail-safe state
FHTI	Fault Handling Time Interval: the time interval between the start of the first frame with invalid position value without notice, and the end of the last frame preceding a fail-safe state of the IC. It is calculated as the sum of DTI, EXE, and REP figures. The following equation is valid for any diagnostic: $FHTI = DTI + EXE + REP$

Table 73 – Glossary of Terms for the Definition Regarding Fault Handling Time Interval

The following table details the cycle time, execution time and reporting time for all monitors included in MLX90377. In all cases, the worst-case timing values are provided in the table below:

Category and safety mechanism name	DTI	EXE	REP
Signal-conditioning (AFE, External Sensor) Diagnostic			
Magnetic Signal Conditioning Voltage Test Pattern	1 * DTI _{ANA}	1 * τ _R	1 * τ _R
Magnetic Signal Cond. Rough Offset Clipping check	2.5 ms	1 * τ_R	1 * τ_R
Magnetic Signal Conditioning Gain Monitor & clamp	2.5 ms	1 * τ_R	1 * τ_R
External Sensor Sig. Cond. Voltage Valid Range Check	9 * τ _R	0	1 * τ_R
External Sensor Sig. Cond. Frequency Valid Range Check	1*T _{pwm_input}	1 * τ_R	1 * τ_R
A/D Converter Test Pattern	1 * DTI _{ANA}	0	1 * τ_R
ADC Conversion errors & Overflow Errors	1 * τ _R	0	1 * τ_R
Flux monitor	2.5 ms	1 * τ_R	1 * τ_R
Hall-element & Mechanical-stress Tests	1 * DTI _{ANA}	0	1 * τ_R
Digital-circuit Diagnostic			
RAM Parity, 1 bit per 16 bits word, ISO D.2.5.2	< 1 * DTI _{ANA}	0	0
ROM Parity, 1 bit per 16 bits word, ISO D.2.5.2	< 1 * DTI _{ANA}	0	0
NVRAM Double Error Detection ECC ISO D.2.4.1	< 10µs	0	0

MLX90377 - Triaxis Position Processor

Datasheet

Category and safety mechanism name	DTI	EXE	REP
NVRAM 16 bits signature (run-time) ISO D.2.4.3	1 * DTI _{DIG}	0	0
Logical Monitoring of program sequence ISO D.2.9.3 via Watchdog "IWD" (cpu clock) ISO D2.9.2	4 ms	0	0
Watch-dog "AWD" (separate clock) ISO D2.9.1	5ms	0	0
CPU error detection	1 * τ _R	0	0
ADC Interface Checksum	1 * DTI _{ANA}	0	0
DSP Test Pattern (atan2)	1 * DTI _{ANA}	0	0
Critical ports monitoring	1 * DTI _{ANA}	0	0
DSP overflow	1 * τ _R	0	0
ADC data adder test	1 * τ_R	0	0
SENT Fall Collision detection & DAC Overflow	1 * τ _R	0	0
SENT H/W Interface Diagnostic			
SENT parity check over Configuration registers	1 * T _{trigger}	0	0
SENT HW: Protection against re-configuration	1 * T _{trigger}	0	0
System-level diagnostic			
Supply Voltage Monitors except VS_OV & POR	1 * DTI _{ANA}	0	$\textbf{1*}\tau_{R}$
External Supply Overvoltage Monitor VS_OV	1 * DTI _{ANA}	0	1 * τ _R
Supply Bias Current Monitor	1 * DTI _{ANA}	0	1 * τ_R
Overheating monitor	9 * τ _R	1 * τ _R	1 * τ _R

Table 74 - Timings of the cyclic detection mechanism

Note:

- 1. The orange colour coding shows the worst-case FHTI for analog and digital diagnostics
- 2. The ROM and RAM parity mechanism trigger a fail-safe state on the failing ROM or RAM word is accessed. (It is assumed that it will be accessed within one full diagnostic cycle in worst case)
- 3. EXE/REP time = 0 means that the execution or reporting time is negligible compared to the FHTI value

16. Recommended Application Diagrams

This chapter shows the typical application diagrams for the MLX90377 in different packages, which should not be considered as a specification but rather a recommendation. It is up to the end user to define the proper application circuit, based on the exact use-case, i.e. output protocol, power mode, etc.

16.1. Wiring with the MLX90377 in SOIC-8 Package

Figure 34 shows the typical recommended application circuit for the MLX90377 in SOIC-8 package, and Table 75 shows the corresponding value of the external components.

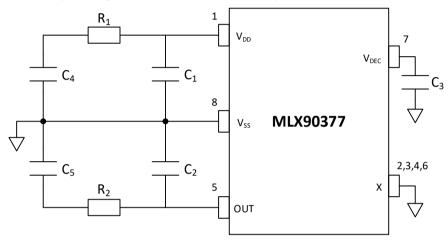


Figure 34 - Recommended wiring for the MLX90377 in SOIC-8 package

Component	Value	Remark
C_1	220nF	Place close to the IC pin
$C_2(C_L)$	100nF 10nF 2.2nF	for analog output for SENT and PWM output for SPC output
C ₃	100nF	Place close to the IC pin
C_4	0nF	Place close to the connector
C ₅	0nF	Place close to the connector
R_1	0Ω	
R ₂	0Ω	

Table 75 - Recommended Values for the MLX90377 in SOIC-8 Package

 C_2 should consider the total capacitance on the bus. C_4 , C_5 , R_1 , R_2 are not needed under typical conditions. They are only needed, when extremely high electromagnetic immunity (EMI) compliance is required, but the value of the resistors and capacitors should not exceed 10Ω and 1nF.

In SENT protocol, an external pi-filter to improve radiated emission performance is not needed. The MLX90377 has a built-in high order low pass filter. Therefore, any additional external filter will deteriorate the generated SENT signal, and could make the output signal not comply to the SENT specifications, such as the fall times and the minimum output voltages.

16.2. Wiring with the MLX90377 in TSSOP-16 Package

Figure 35 shows the typical recommended application circuit for the MLX90377 in TSSOP-16 package, and Table 76 shows the corresponding value of the external components.

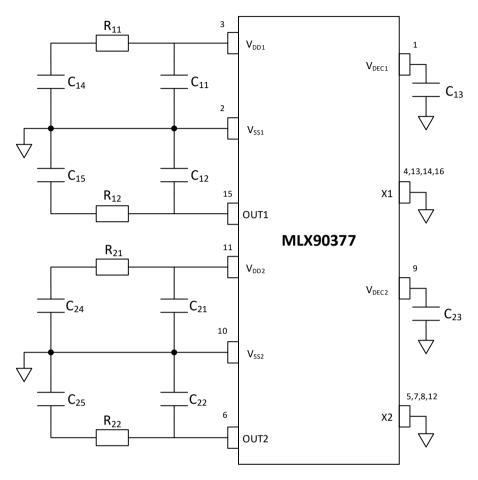


Figure 35 - Recommended wiring for the MLX90377 in TSSOP-16 dual-die package

Component	Value	Remark
C _{x1}	220nF	Place close to the IC pin
C _{x2}	100nF 10nF 2.2nF	for analog output for SENT and PWM output for SPC output
C_{x3}	100nF	Place close to the IC pin
C_{x4}	0nF	Place close to the connector
C _{x5}	0nF	Place close to the connector
R _{x1}	Ω0	
R _{x2}	0Ω	

Table 76 - Recommended Values for the MLX90377 in TSSOP-16 dual-die Package

 C_{x2} should consider the total capacitance on the bus. C_{x4} , C_{x5} , R_{x1} , R_{x2} are not needed under typical conditions. They are only needed, when extremely high electromagnetic immunity (EMI) compliance is required, but the value of the resistors and capacitors should not exceed 10Ω and 1nF.

In SENT or SPC protocol, an external pi-filter to improve radiated emission performance is not needed. The MLX90377 has a built-in high order low pass filter. Therefore, any additional external filter will deteriorate the generated output signal, and could make the output signal not comply to the SENT or SPC specifications, such as the fall times and the minimum output voltages.

16.3. Wiring with the MLX90377 in DMP-4 Package (built-in capacitors)

Figure 36 shows the typical recommended application circuit for the MLX90377 in DMP-4 package, and Table 77 shows the corresponding value of the external components.

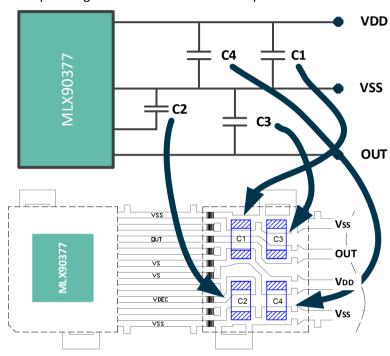


Figure 36 - Internal wiring of the MLX90377 in DMP-4

Component	Value	Remark
C1	220nF	
C2	100nF	
С3	10nF	
C4	0	not mounted

Table 77 - DMP-4 capacitors configuration

16.4. Wiring with the MLX90377 in SMP-3 Package (built-in capacitors)

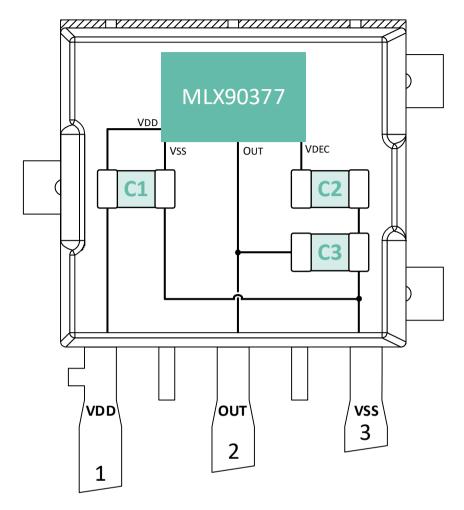


Figure 37 - Internal wiring of the MLX90377 in SMP-3

Component	Value	Remark
C1	220 nF	
C2	100 nF	
С3	10 nF	

Table 78 - SMP-3 capacitors configuration

Datasheet

17. Standard Information Regarding Manufacturability of Melexis Products with Different Soldering Processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry.

For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/en/quality-environment/soldering)

For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis.

For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim & form recommendation application note: "Lead Trimming and Forming Recommendations" (http://www.melexis.com/en/documents/documentation/application-notes/lead-trimming-and-forming-recommendations).

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment.

18. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

19. Package Information

19.1. SOIC-8 Package

19.1.1. SOIC-8- Package Dimensions

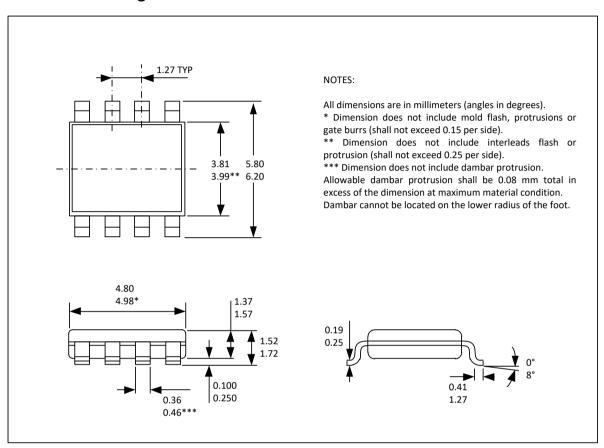


Figure 38 - SOIC-8 Package Outline Dimensions

19.1.2. SOIC-8- Pinout and Marking

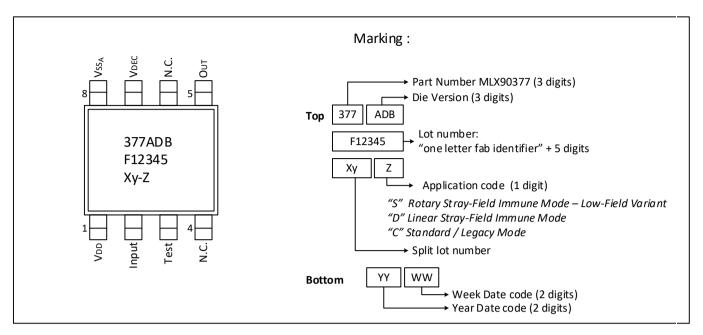


Figure 39 - SOIC-8 Pinout and Marking

19.1.3. SOIC-8- Sensitive spot positioning

19.1.3.1. Rotary Stray-field Immune and Standard Mode Applications

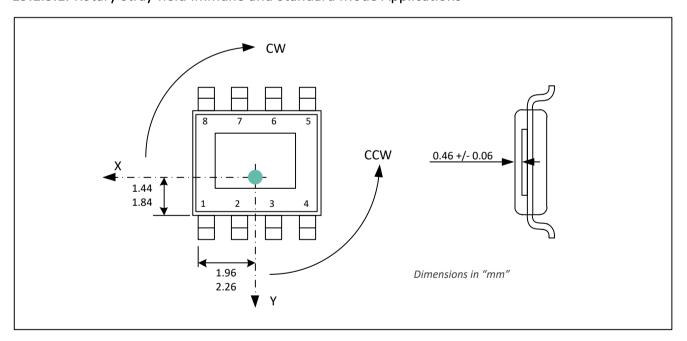


Figure 40 - SOIC-8 Sensitive Spot Position

19.1.3.2. Linear Stray-field Immune Applications

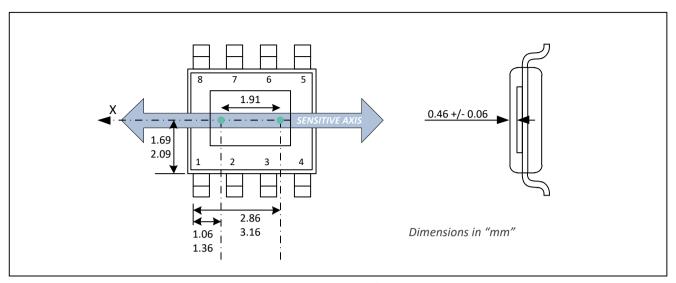
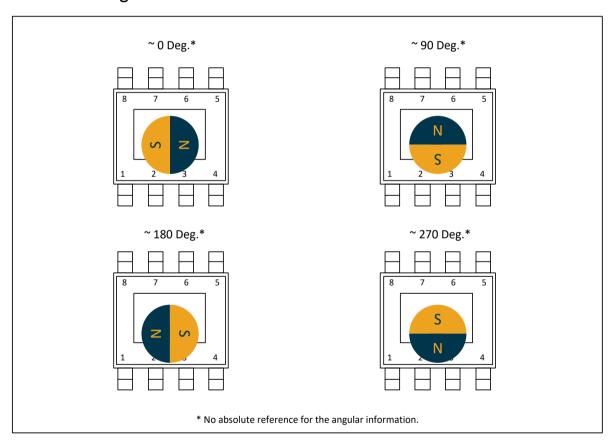
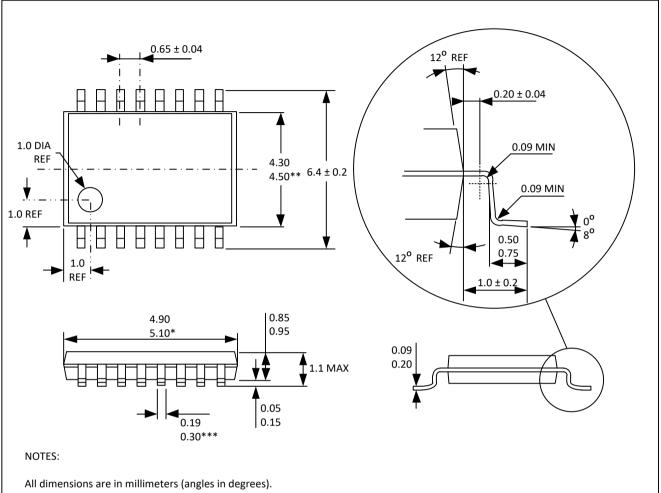


Figure 41 - SOIC-8 Sensitive Spot position for Linear Stray-Field Immune

19.1.4. SOIC-8- Angle detection




Figure 42 - SOIC-8 Angle Detection

The MLX90377 is an absolute angular position sensor but the linearity error (See section 9) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point).

19.2. TSSOP-16 Package

19.2.1. TSSOP-16- Package Dimensions

- * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
- ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
- *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.

 REF: Reference dimensions as stated in packaging supplier POD, based on JEDEC.

Figure 43 - TSSOP-16 Package Outline Dimensions

19.2.2. TSSOP-16 Dual-Die Package- Pinout and Marking

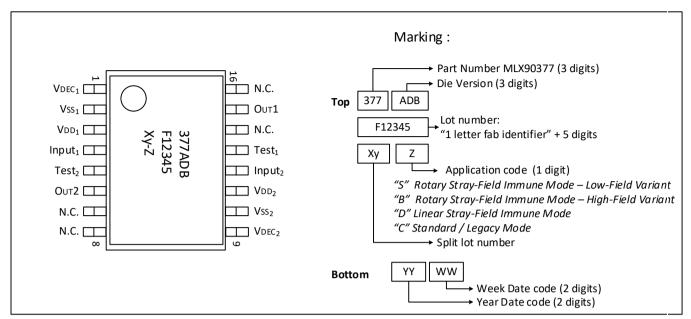


Figure 44 - TSSOP-16 Dual-Die Package Pinout and Marking

19.2.3. TSSOP-16 Dual-Die Package- Sensitive spot positioning

19.2.3.1. Rotary Stray-field Immune and Standard Mode applications

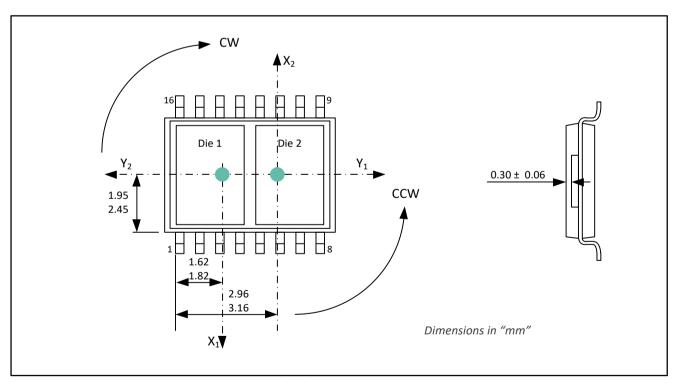


Figure 45 - TSSOP-16 dual-die package Sensitive Spot Position

19.2.3.2. Linear Stray-field Immune Applications

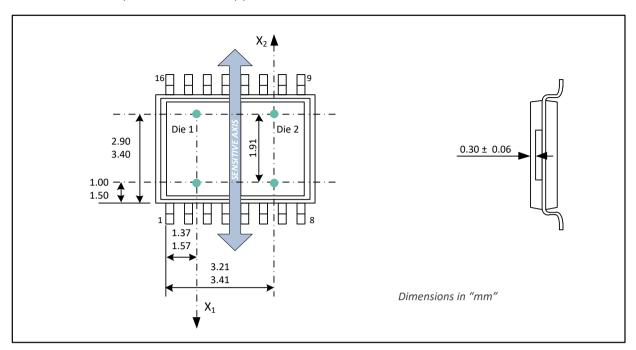


Figure 46 - TSSOP-16 dual-die package - Sensitive Spot Location for Linear Stray-field Immune

19.2.4. TSSOP-16- Angle Detection

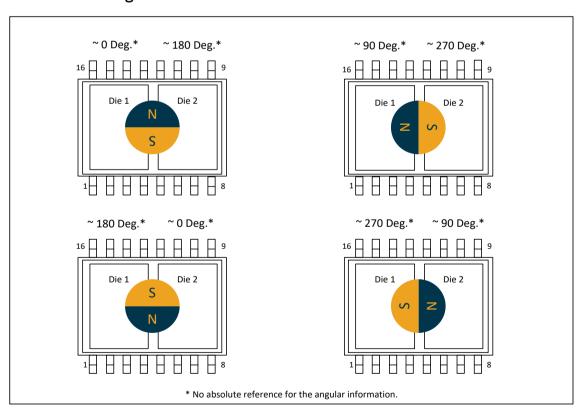


Figure 47 - TSSOP-16 Angle Detection

The MLX90377 is an absolute angular position sensor but the linearity error (see section 9) does not include the error linked to the absolute reference ODeg (which can be fixed in the application through the discontinuity point).

19.3. DMP-4- Package

19.3.1. DMP-4- Package Outline Dimensions (POD)- Straight Leads

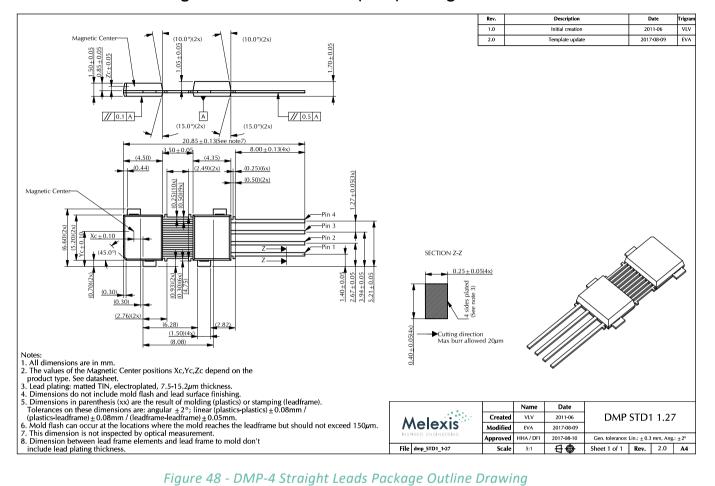


Figure 48 - DMP-4 Straight Leads Package Outline Drawing

19.3.2. DMP-4- Package Outline Dimensions (POD)- STD2 2.54

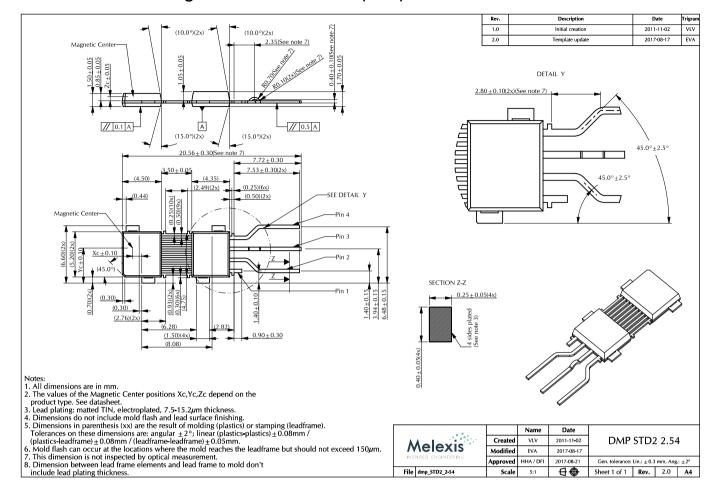


Figure 49 - DMP-4 STD2 2.54 Package Outline Drawing

19.3.3. DMP-4- Package Outline Dimensions (POD) STD4 2.54

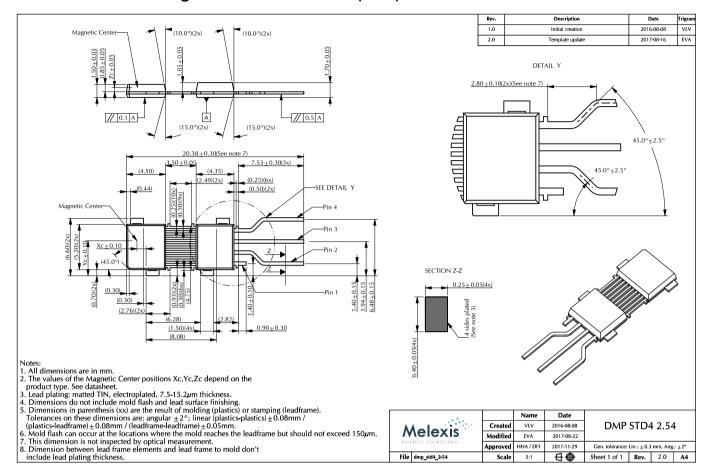


Figure 50 - DMP-4 STD4 2.54 Package Outline Drawing

19.3.4. DMP-4- Marking

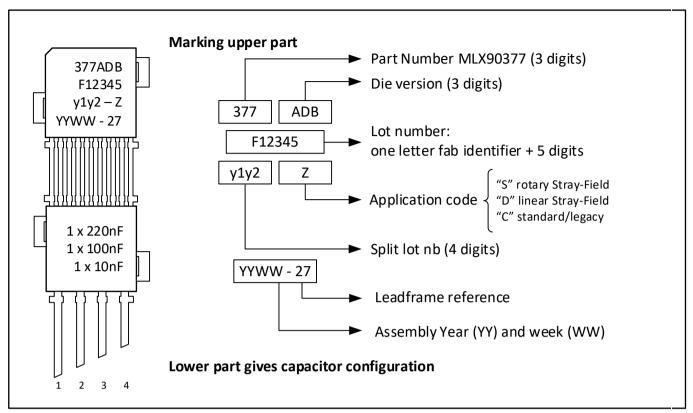


Figure 51 - DMP-4 Marking

19.3.5. DMP-4- Sensitive Spot Positioning

19.3.5.1. Rotary Stray-field Immune or Standard Mode Applications

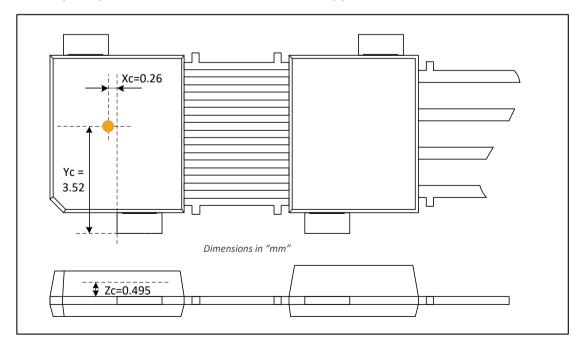


Figure 52 - DMP-4 Rotary Stray-field or legacy Sensitive Spot Position

19.3.5.2. Linear Stray-field Immune Applications

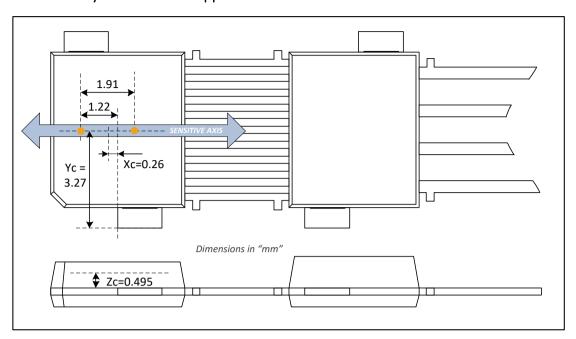
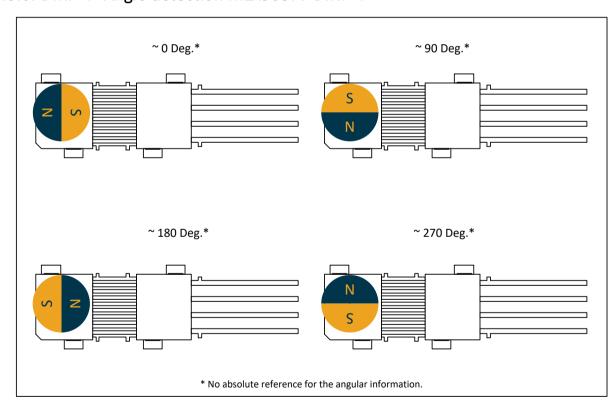
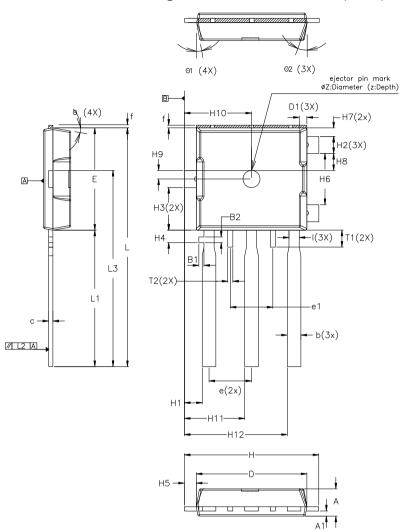


Figure 53 - DMP-4 Rotary Stray-field or legacy Sensitive Spot Position

19.3.6. DMP-4- Angle detection MLX90377 DMP-4




Figure 54 - DMP-4 Angle Detection

The MLX90377 is an absolute angular position sensor but the linearity error (see section 9) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point).

19.4. SMP-3- Package

19.4.1. SMP-3- Package Outline Dimensions (POD)

Dimension	MIN.	NOM.	MAX.	Dimension	MIN.	NOM.	MAX.
Α	1.550	1.600	1.650	L	13.870	14.000	14.130
A1	0.250	0.290	0.330	L1	7.870	8.000	8.130
B1	0.235	0.300	0.365	L2	-0.250	0.000	0.250
B2	0.33 REF		L3	11.375	11.525	11.675	
С	0.250	0.280	0.310	I	0.525	0.600	0.675
D	6.420	6.500	6.580	b	0.770	0.820	0.870
D1	0.450 REF		e1	2.500 BSC			
Е	5.920	6.000	6.080	е	2.500 BSC		
f	0.000		0.150	Θ	8°	10°	12°
Н	7.800	7.900	8.000	91	8°	10°	12°
H1	0.900	1.050	1.200	Θ2	18°	20°	22°
H2	0.975	1.050	1.125	φZ	0.900	1.000	1.100
НЗ	2.380	2.475	2.570	z	0.025		0.150
H4	0.635	0.730	0.825	T1	0.870	1.000	1.130
H5	0.605	0.700	0.795	T2	0.225	0.300	0.375
H6	2.875	2.950	3.025				
H7 0.475 REF							
H8	0.875	0.950	1.025				

0.525

3.950

3.550

6.050

0.410

3.835

3.400

5.900

H10

H11

H12

0.640

4.065

3.700

6.200

NOTES:

A PACKAGE WIDTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15MM PER END. PACKAGE LENGTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25MM PER SIDE.

⚠ THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. PACKAGE WIDTH AND LENGTH ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH.

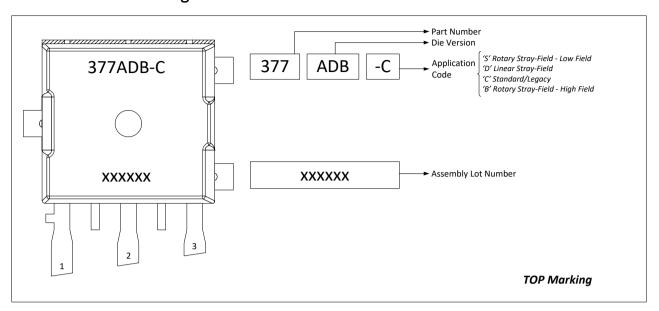

- 4. PLATING SPECS: MATTED TIN, ELECTROPLATED, 12 \pm 5 MICROMETER (μm) THICKNESS
- 5. ALL "EARS" ARE CONNECTED TO ELECTRIC GROUND.

Figure 55 - SMP-3 Package Outline Drawing

^{1.} DIMENSIONS ARE IN MILLIMETER UNLESS NOTED OTHERWISE.

19.4.2. SMP-3- Marking

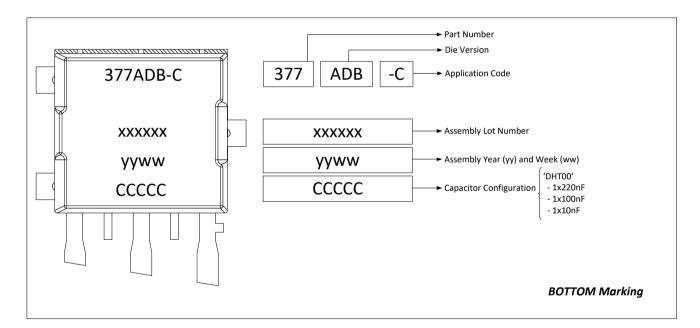


Figure 56 - SMP-3 Marking

19.4.3. SMP-3- Sensitive Spot Positioning

19.4.3.1. Rotary Stray-field Immune or Standard Mode Applications

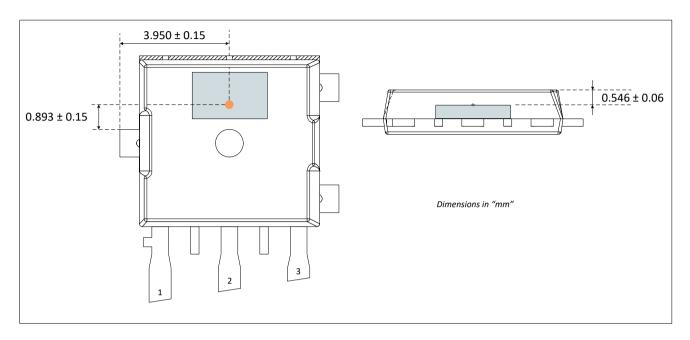


Figure 57 - SMP-3 Rotary Stray-field or legacy Sensitive Spot Position

19.4.3.2. Linear Stray-field Immune Applications

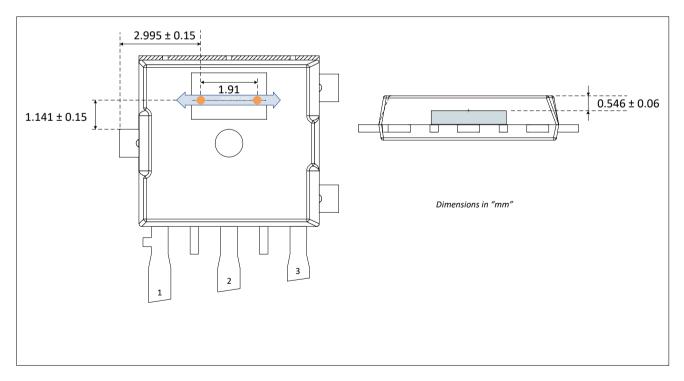


Figure 58 - SMP-3 Rotary Stray-field or legacy Sensitive Spot Position

19.4.4. SMP-3- Angle detection MLX90377 SMP-3

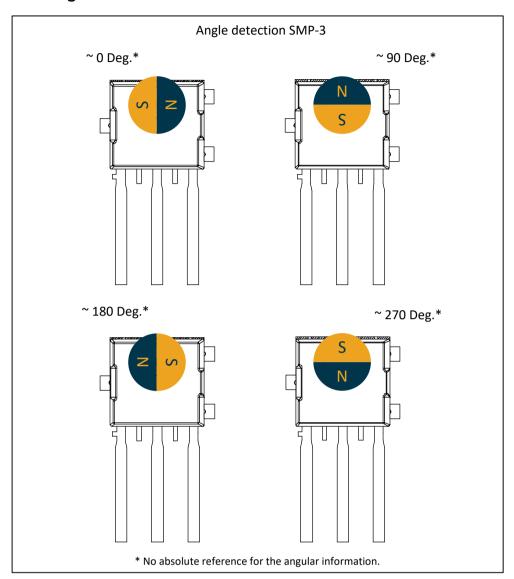


Figure 59 - SMP-3 Angle Detection

The MLX90377 is an absolute angular position sensor but the linearity error (see section 9) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point).

Datasheet

19.5. Packages Thermal Performances

The table below describe the thermal behaviour of available packages following JEDEC EIA/JESD 51.X standard.

Package	Junction to case - θjc	Junction to ambient - θja (JEDEC 1s2p board)	Junction to ambient - θja (JEDEC 1s0p board)
SOIC-8	38.8 K/W	112 K/W	153 K/W
TSSOP-16	27.6 K/W	99.1 K/W	137 K/W
DMP-4	32.2 K/W	-	88.7 K/W ⁽⁴⁵⁾
SMP-3	34.4 K/W	-	206 K/W ⁽⁴⁵⁾

Table 79 - Standard Packages Thermal Performances

⁴⁵ PCB-less solution has been evaluated in a typical application case. Values for this package are given as informative.

MLX90377 - Triaxis® Position Processor

Datasheet

20. Contact

For the latest version of this document, go to our website at www.melexis.com.
For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Email : sales_europe@melexis.com
Americas	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

21. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.

Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

- 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
- 2. civil firearms, including spare parts or ammunition for such arms;
- 3. defense related products, or other material for military use or for law enforcement;
- 4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2021)

IATF 16949 and ISO 14001 Certified