

Evaluation Board Description

Features and Benefits

- Dual RF input for antenna space and frequency diversity, LNA cascading or differential feeding
- Fully integrated PLL-based synthesizer
- 2nd mixer with image rejection
- Reception of ASK or FSK modulated signals
- Wide operating voltage and temperature ranges
- Very low standby current consumption
- Low operating current consumption
- External IF filters 455kHz or 10.7MHz
- Internal FSK demodulator
- Average or peak detection data slicer
- RSSI output with high dynamic range for RF level indication
- Output noise cancellation filter
- MCU clock output
- High over-all frequency accuracy

Application Examples

- General digital and analog RF receivers at 300 to 930MHz
- Tire pressure monitoring systems (TPMS)
- Remote keyless entry (RKE)
- Low power telemetry systems
- Alarm and security systems
- Active RFID tags
- Remote controls
- Garage door openers
- Home and building automation

Ordering information

Part No. (see paragraph 4)

EVB71120-315-C EVB71120-433-C EVB71120-868-C EVB71120-915-C

Note 1: Peak detection mode, IF2 selection = 10.7MHz is default population.

General Description

The MLX71120 is a multi-band, single-channel RF receiver based on a double-conversion superheterodyne architecture. It can receive FSK and ASK modulated signals. The IC is designed for general purpose applications for example in the European bands at 433MHz and 868MHz or for similar applications in North America or Asia, e.g. at 315MHz or 915MHz. It is also well-suited for narrow-band applications according to the ARIB STD-T67 standard in the frequency range 426MHz to 470MHz.

The receiver's extended temperature and supply voltage ranges make the device a perfect fit for automotive or similar applications where harsh environmental conditions are expected.

300 to 930MHz Receiver Evaluation Board Description

Contents

Features and Benefits	1
Application Examples	1
Ordering information	1
General Description	1
1. Theory of Operation	3
1.1. General	3
1.2. Technical Data Overview	3
1.3. Block Diagram	4
1.4. Operating Modes	4
1.5. Frequency Range	5
1.6. LNA Selection	5
1.7. External IF2 Selection	5
1.8. Demodulation Selection	5
1.9. Data Slicer	5
2. Frequency Planning	6
2.1. Calculation of Frequency Settings	7
2.2. Standard Frequency Plans	8
2.3. 433/868MHz Frequency Diversity	8
3. Dual-Channel Application Circuits for FSK & ASK Reception	9
3.1. Peak Detector Data Slicer	9
3.1.1. Component Arrangement Top Side (Peak Detection Data Slicer, IF2 = 10.7MHz)	10
3.1.2. Component Arrangement Top Side (Peak Detection Data Slicer, IF2 = 455kHz)	11
3.2. Averaging Data Slicer Configured for Bi-Phase Codes	12
3.2.1. Component Arrangement Top Side (Averaging Data Slicer, IF2 = 10.7MHz)	13
3.3. Component List for Dual-Channel Application	14
3.4. PCB Layouts for Antenna Space Diversity	15
4. Board Variants	15
5. Package Description	16
5.1. Soldering Information	17
6. Reliability Information	17
7. ESD Precautions	17
8. Contact	18
9. Disclaimer	18

1. Theory of Operation

1.1. General

The MLX71120 receiver architecture is based on a double-conversion super-heterodyne approach. The two LO signals are derived from an on-chip integer-N PLL frequency synthesizer. The PLL reference frequency is derived from a crystal (XTAL). As the first intermediate frequency (IF1) is very high, a reasonably high degree of image rejection is provided even without using an RF front-end filter. At applications asking for very high image rejections, cost-efficient RF front-end filtering can be realized by using a SAW filter in front of the LNA. The second mixer MIX2 is an image-reject mixer.

The receiver signal chain is setup by one (or two) low noise amplifier(s) (LNA1, LNA2), two down-conversion mixers (MIX1, MIX2) and an external IF filter with an on-chip amplifier (IFA). By choosing the required modulation via an FSK/ASK switch (at pin MODSEL), either the on-chip FSK demodulator (FSK DEMOD) or the RSSI-based ASK detector is selected. A second order data filter (OA1) and a data slicer (OA2) follow the demodulator. The data slicer threshold can be generated from the mean-value of the data stream or by means of the positive and negative peak detectors (PKDET+/-). A digital post-processing of the sliced data signal can be performed by a noise filter (NF) building block.

The dual LNA configuration can be used for antenna space diversity or antenna frequency diversity or to setup an LNA cascade (to further improve the input sensitivity). The two LNAs can also be setup to feed the RF signal differentially.

A sequencer circuit (SEQ) controls the timing during start-up. This is to reduce start-up time and to minimize power dissipation.

A clock output, which is a divide-by-8 version of the crystal oscillator signal, can be used to drive a microcontroller. The clock output is open drain and gets activated through a load connected to positive supply.

1.2. Technical Data Overview

•	Input frequency ranges: 300 to 470MHz 610 to 930MHz	Image rejection: G5dB 1 st IF (with external RF frontendent filter)
	Power supply range: 2.1 to 5.5V	25dB 2 nd IF (internal image
	Temperature range: -40 to +125°C	rejection)
	Shutdown current: 50 nA	Maximum data rate:
	Operating current: 6.5 to 8.1mA	50kps RZ (bi-phase) code,
	Selectable IF2 frequency: 10.7MHz or	☐ 100kps NRZ
	455kHz	 Spurious emission: < -54dBm
	FSK deviation range:	 Linear RSSI range: > 70dB
		 Crystal reference frequency: 16 to 27MHz
	☐ ±2kHz to ±10kHz (NB)	 MCU clock frequency: 2.0 to 3.4

\square Input Sensitivity: at 4kbps NRZ, BER = $3 \cdot 10^{-3}$						
	Frequency	315 MHz	433.92 MHz	868.3 MHz	915 MHz	
ECN	wide band 180kHz BW, IF2=10.7MHz $\Delta f = \pm 20 \text{kHz}$	-109dBm	-108dBm	-106dBm	-104dBm	
FSK	narrow band 20kHz BW, IF2=455kHz $\Delta f = \pm 5$ kHz	-114dBm	-112dBm	-111dBm	-109dBm	
ASK wide band 180kHz BW, IF2=10.7MHz		-113dBm	-113dBm	-111dBm	-109dBm	

Note: - Sensitivities given for RF input 1 (without SAW filter)

- Sensitivity for RF input 2 is about 2 to 3dB worse (because of SAW filter loss)

REVISION 007 - JUNE 9, 2017 390127112001

1.3. Block Diagram

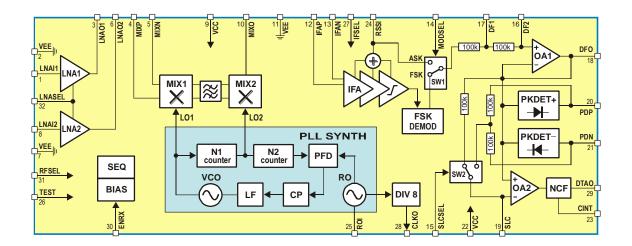


Fig. 1: MLX71120 block diagram

The MLX71120 receiver IC consists of the following building blocks:

- PLL synthesizer (PLL SYNTH) to generate the first and second local oscillator signals LO1 and LO2. The PLL SYNTH consists of a fully integrated voltage-controlled oscillator (VCO), a distributed feedback divider chain (N1, N2), a phase-frequency detector (PFD) a charge pump (CP), a loop filter (LF) and a crystal-based reference oscillator (RO).
- Two low-noise amplifiers (LNA) for high-sensitivity RF signal reception
- First mixer (MIX1) for down-conversion of the RF signal to the first IF (intermediate frequency)
- Second mixer (MIX2) with image rejection for down-conversion from the first to the second IF
- IF amplifier (IFA) to provide a high voltage gain and an RSSI signal output
- FSK demodulator (FSK DEMOD)
- Operational amplifiers OA1 and OA2 for low-pass filtering and data slicing, respectively
- Positive (PKDET+) and negative (PKDET-) peak detectors
- Switches SW1 to select between FSK and ASK as well as SW2 to chose between averaging or peak detection mode.
- Noise cancellation filter (NF)
- Sequencer circuit (SEQ) and biasing (BIAS) circuit
- Clock output (DIV8)

1.4. Operating Modes

ENRX	Description
0	Shutdown mode
1	Receive mode

Note: ENRX is pulled down internally.

REVISION 007 - JUNE 9, 2017 Page 4 of 18

1.5. Frequency Range

Two different receive frequency ranges can be selected by the control signal RFSEL.

RFSEL	Description		
0	Input frequency range 300 to 470MHz		
1	Input frequency range 610 to 930MHz		

1.6. LNA Selection

LNASEL	Description
0	LNA1 active, LNA2 shutdown
Hi-Z	LNA1 and LNA2 active
1	LNA1 shutdown, LNA2 active

Note: Hi-Z state means pin LNASEL is left floating (pin is internally pulled to $V_{\text{CC}}/2$ in this case).

1.7. External IF2 Selection

IFSEL	Description
0	IF2 = 455 kHz
1	IF2 = 10.7 MHz

1.8. Demodulation Selection

MODSEL	Description	
0	ASK demodulation	
1	FSK demodulation	

1.9. Data Slicer

SLCSEL	Description	
0	Averaging detection mode	
1	Peak detection mode	

2. Frequency Planning

Because of the double conversion architecture that employs two mixers and two IF signals, there are four different combinations for injecting the LO1 and LO2 signals:

LO1 high side and LO2 high side: receiving at f_{RF}(high-high)
 LO1 high side and LO2 low side: receiving at f_{RF}(high-low)
 LO1 low side and LO2 high side: receiving at f_{RF}(low-high)
 LO1 low side and LO2 low side: receiving at f_{RF}(low-low)

As a result, four different radio frequencies (RFs) could yield one and the same second IF (IF2). Fig. 2 shows this for the case of receiving at f_{RF} (high-high). In the example of Fig. 2, the image signals at f_{RF} (low-high) and f_{RF} (low-low) are suppressed by the bandpass characteristic provided by the RF front-end. The bandpass shape can be achieved either with a SAW filter (featuring just a couple of MHz bandwidth), or by the tank circuits at the LNA input and output (this typically yields 30 to 60MHz bandwidth). In any case, the high value of the first IF (IF1) helps to suppress the image signals at f_{RF} (low-high) and f_{RF} (low-low).

The two remaining signals at IF1 resulting from f_{RF} (high-high) and f_{RF} (high-low) are entering the second mixer MIX2. This mixer features image rejection with so-called single-sideband (SSB) selection. This means either the upper or lower sideband of IF1 can be selected. In the example of Fig. 2, LO2 high-side injection has been chosen to select the IF2 signal resulting from f_{RF} (high-high).

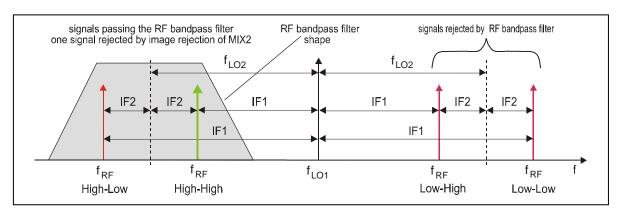


Fig. 2: The four receiving frequencies in a double conversion superhet receiver

It can be seen from the block diagram of Fig. 1 that there is a fixed relationship between the LO signal frequencies (f_{LO1} , f_{LO2}) and the reference oscillator frequency f_{RO} .

$$\mathbf{f}_{\text{LO1}} = \mathbf{N}_1 \cdot \mathbf{f}_{\text{LO2}} \qquad \qquad \mathbf{f}_{\text{LO2}} = \mathbf{N}_2 \cdot \mathbf{f}_{\text{RO}}$$

The IF2 frequency can be selected to 455kHz or 10.7MHz via the logic level at the IFSEL control pin. At the same time the output impedance of the 2nd mixer at pin MIXO is set according to the IF2 (please refer to pin description for details). Of course, also the operating frequency of the FSK demodulator (FSK DEMOD) is set accordingly.

2.1. Calculation of Frequency Settings

The receiver has two predefined receive frequency plans which can be selected by the RFSEL control pin. Depending on the logic level of RFSEL pin the sideband selection of the second mixer and the counter settings for N1 and N2 are changed accordingly. (see in 1.5)

RFSEL	Injection	f _{RFmin} [MHz]	f _{RFmax} [MHz]	N ₁	N ₂
0	high-low	300	470	4	6
1	low-high	610	930	2	12

The following table shows the relationships of several internal receiver frequencies for the two input frequency ranges.

f _{RF} [MHz]	f _{IF1}	f _{LO1}	f _{LO2}	f _{RO}
300 to 470	$\frac{\mathbf{f}_{RF} + \mathbf{N}_{1} \mathbf{f}_{IF2}}{\mathbf{N}_{1} - 1}$	$\frac{N_{1}(f_{RF} + f_{IF2})}{N_{1} - 1}$	$\frac{\mathbf{f}_{RF} + \mathbf{f}_{IF2}}{\mathbf{N}_1 - 1}$	$\frac{f_{RF} + f_{IF2}}{N_2(N_1 - 1)}$
610 to 930	$\frac{\mathbf{f}_{RF} - \mathbf{N}_{1} \mathbf{f}_{IF2}}{\mathbf{N}_{1} + 1}$	$\frac{N_{1}(f_{RF} + f_{IF2})}{N_{1} + 1}$	$\frac{f_{RF} + f_{IF2}}{N_1 + 1}$	$\frac{f_{RF} + f_{IF2}}{N_2(N_1 + 1)}$

Given IF2 is selectable at either 455kHz or 10.7MHz and the corresponding N_1 , N_2 counter settings, above equations can be transferred into the following table.

IF2=455kHz

f _{RF} [MHz]	f _{IF1}	f _{LO1}	f _{LO2}	f _{RO}
300 to 470	$\frac{f_{RF} + 1.82MHz}{3}$	$\frac{4(f_{RF} + 0.455M \text{ Hz})}{3}$	$f_{RF} + 0.455MHz$	$\frac{f_{RF} + 0.455MHz}{18}$
610 to 930	$\frac{f_{RF} - 0.91MHz}{3}$	$\frac{2(f_{RF} + 0.455M \text{ Hz})}{3}$	3	$\frac{f_{RF} + 0.455MHz}{36}$

IF2=10.7MHz

f _{RF} [MHz]	f _{IF1}	f _{LO1}	f _{LO2}	f _{RO}
300 to 470	$\frac{f_{RF} + 42.8MHz}{3}$	$\frac{4(f_{RF} + 10.7MHz)}{3}$	$f_{RF} + 10.7MHz$	$\frac{f_{RF} + 10.7MHz}{18}$
610 to 930	$\frac{f_{RF} - 21.4MHz}{3}$	$\frac{2(f_{RF} + 10.7M \text{ Hz})}{3}$	3	$\frac{f_{RF} + 10.7MHz}{36}$

2.2. Standard Frequency Plans

IF2 = 455kHz

f _{RF} [MHz]	f _{IF1} [MHz]	f _{LO1} [MHz]	f _{LO2} [MHz]	f _{RO} [MHz]
315	105.6067	420.6067	105.1517	17.525277
433.92	145.2467	579.1667	144.7917	24.131944
868.3	289.1300	579.1700	289.5850	24.132083
915	304.6967	610.3033	305.1517	25.429305

IF2 = 10.7MHz

f _{RF} [MHz]	f _{IF1} [MHz]	f _{LO1} [MHz]	f _{LO2} [MHz]	f _{RO} [MHz]
315	119.2667	434.2667	108.5667	18.094444
433.92	158.0667	592.8267	148.2067	24.701111
868.3	282.3000	586.0000	293.0000	24.416666
915	297.8667	617.1333	308.5667	25.713888

2.3. 433/868MHz Frequency Diversity

The receiver's multi-band functionality can be used to operate at two different frequency bands just by changing the logic level at pin RFSEL and without changing the crystal. This feature is applicable for common use of the 433 and 868MHz bands. Below table shows the corresponding frequency plans.

IF2 = 455kHz

RFSEL	f _{RF} [MHz]	f _{IF1} [MHz]	f _{LO1} [MHz]	f _{LO2} [MHz]	f _{RO} [MHz]
0	433.9225	145.2483	579.17	144.7925	24.132083
1	868.3	289.1300	579.17	289.5850	24.132083

3. Dual-Channel Application Circuits for FSK & ASK Reception

3.1. Peak Detector Data Slicer

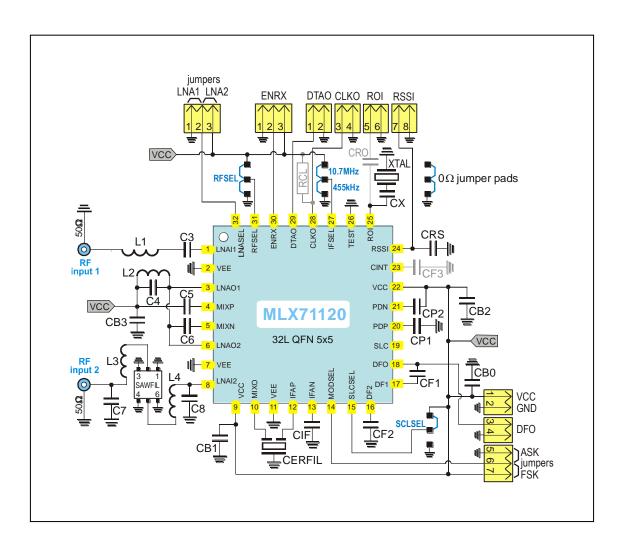


Fig. 3: Circuit schematic

3.1.1. Component Arrangement Top Side (Peak Detection Data Slicer, IF2 = 10.7MHz)

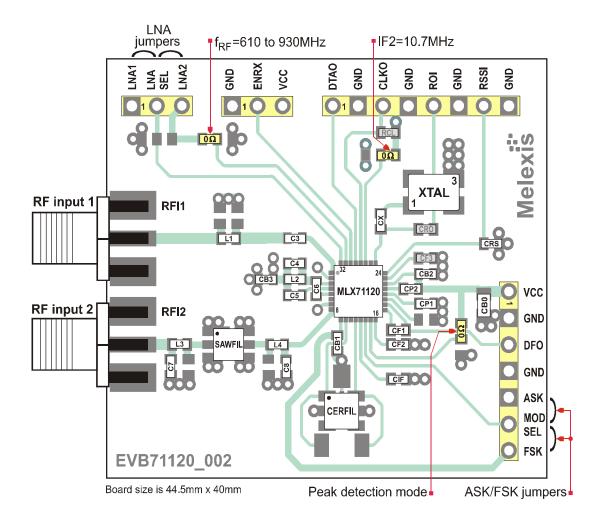


Fig. 4: PCB top-side view

3.1.2. Component Arrangement Top Side (Peak Detection Data Slicer, IF2 = 455kHz)

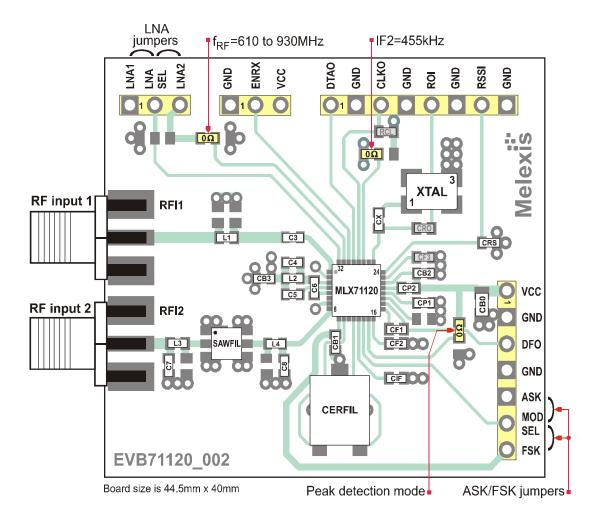


Fig. 5: PCB top-side view

3.2. Averaging Data Slicer Configured for Bi-Phase Codes

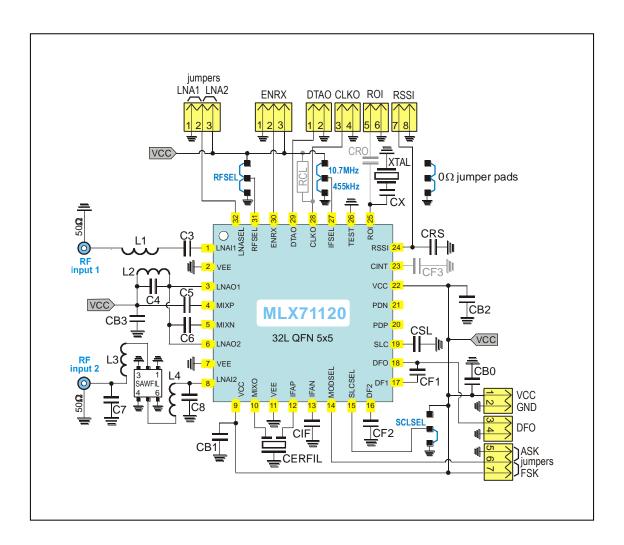


Fig. 6: Circuit schematic

3.2.1. Component Arrangement Top Side (Averaging Data Slicer, IF2 = 10.7MHz)

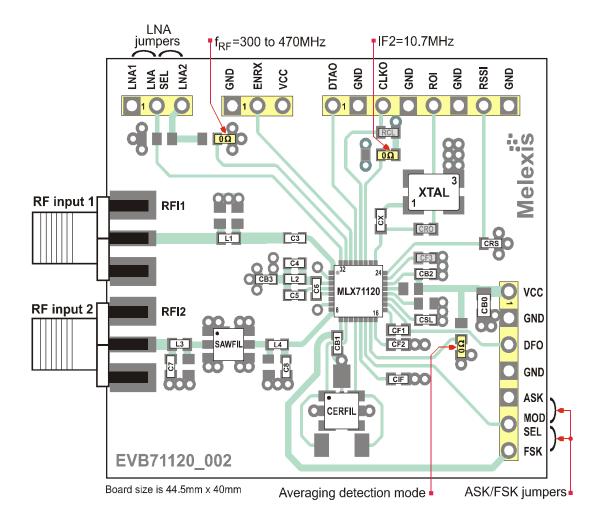
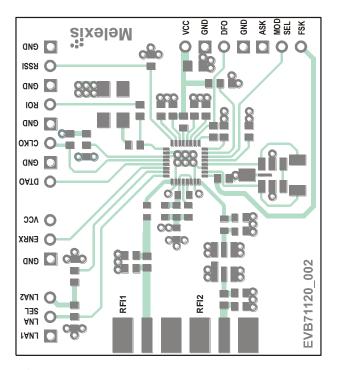
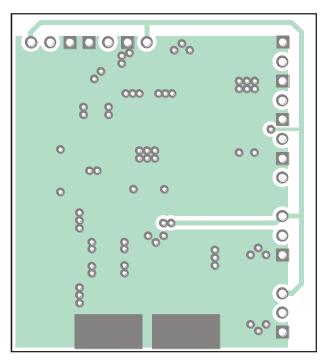


Fig. 7: PCB top-side view

3.3. Component List for Dual-Channel Application

Below table is valid for test circuits shown in Figures 3.1 to 3.2.


	elow table is valid for test circuits snown in Figures 3.1 to 3.2.								
Part	Size	Value @ 315 MHz	Value @ 433.92 MHz	Value @ 868.3 MHz	Value @ 915 MHz	Tol.		Description	
C3	0603	100 pF	100 pF	100 pF	100 pF	±5%	LNA input filteri	ng capacitor	
C4	0603	4.7 pF	3.9 pF	2.2 pF	1.5 pF	±5%	LNA output tank capacitor		
C5	0603	100 pF	100 pF	100 pF	100 pF	±5%	MIX1 positive in	put matching capacitor	
C6	0603	100 pF	100 pF	100 pF	100 pF	±5%	MIX1 negative in	nput matching capacitor	
C7	0603	NIP	4.7 pF	3.9 pF	NIP	±5%	matching capac	itor	
C8	0603	NIP	NIP	1.0 pF	NIP	±5%	matching capac	itor	
CB0	0805	330 nF	330 nF	330 nF	330 nF	±10%	decoupling capa	acitor	
CB1	0603	330 pF	330 pF	330 pF	330 pF	±10%	decoupling capa	acitor	
CB2	0603	330 pF	330 pF	330 pF	330 pF	±10%	decoupling capa	acitor	
CB3	0603	330 pF	330 pF	330 pF	330 pF	±10%	decoupling capa	acitor	
CF1	0603	680 pF	680 pF	680 pF	680 pF	±10%	data low-pass fi for data rate of	•	
CF2	0603	330 pF	330 pF	330 pF	330 pF	±10%	data low-pass fi for data rate of	•	
CF3	0603		value according t	to the data rate		±10%	ontional canacit	tor for noise cancellation filter	
CF3	0003	cor	nected to ground it	noise filter not us	sed	±10%	ориона сарасн	or for noise cancellation filter	
CIF	0603	1 nF	1 nF	1 nF	1 nF	±10%	IFA feedback ca	pacitor	
CP1	0603	33 nF	33 nF	33 nF	33 nF	±10%	positive PKDET capacitor, for data rate of 4 kbps NRZ		
CP2	0603	33 nF	33 nF	33 nF	33 nF	±10%	negative PKDET capacitor, for data rate of 4 kbps NRZ		
CRS	0603	1 nF	1 nF	1 nF	1 nF	±10%	RSSI output low pass capacitor		
CRO	0603	1 nF	1 nF	1 nF	1 nF	±5%	optional capacitor, to couple external RO signal		
CSL	0603	100 nF	100 nF	100 nF	100 nF	±10%	data slicer capacitor, for data rate of 4 kbps NRZ		
CJL	0003		for averaging dete	ction mode only		±1076			
CX	0603	27 pF	27 pF	27 pF	27 pF	±5%	crystal series ca	pacitor	
L1	0603	56 nH	27 nH	0Ω	0Ω	±5%	matching induct	tor	
L2	0603	27 nH	15 nH	3.9 nH	3.9 nH	±5%	LNA output tank	k inductor	
L3	0603	0Ω	47 nH	22 nH	0Ω	±5%	matching induct	tor	
L4	0603	56 nH	68 nH	22 nH	0Ω	±5%	matching induct	tor	
RCL	0603	3.3 kΩ	3.3 kΩ	3.3 kΩ	3.3 kΩ	±5%	optional CLK out to clock output	tput resistor, signal generated	
SAW	SMD	SAFDC315M	RF3446	SAFCC868M	SAFCC915M		low-loss SAW fil	Iter from Murata	
FIL	3x3	SM0T00 (315 MHz)	(433.92 MHz)	SL0X00 (868.3 MHz)	AL0N00 (915 MHz)		or equivalent pa		
	SMD	(213 141117)	SFECF10N	, ,	(213 1911 12)				
CER	3.45x3.1		$B_{3dB} = 1$				IF2=10.7MHz	ceramic filter	
FIL	SMD		CFUKG45	55KD4A			IF2=455kHz	from Murata, or equivalent part	
	6.5x6.0		$B_{6dB} = 2$	0 kHz			IFZ=455KHZ	or equivalent part	
		18.094444	24.701111	24.416667	25.713889				
		MHz	MHz	MHz	MHz				
		HEX24- 18.094444MH	HEX24-	HEX24-	HEX24- 25.713889MH		IF2=10.7MHz		
	SMD	Z-12-50-F-	24.701111MHZ-	24.416667MHZ	Z-12-50-F-		11 2-10.7141112	crystal from Te	crystal from Telcona,
XTAL	5x3.2	H20-T2075-	12-50-F-H20- T2075-W2-T	-12-50-F-H20- T2075-W2-T	H20-T2075-			or equivalent part	
		W2-T			W2-T				
		17.525278 MHz	24.132 MF		25.429306 MHz		IF2=455kHz		
			\pm 20ppm cal., \pm	30ppm temp.					


Note: NIP – not in place, may be used optionally

3.4. PCB Layouts for Antenna Space Diversity

Board layout data in Gerber format is available, board size is 40mm x 44.5mm.

PCB top view

PCB bottom view

4. Board Variants

Туре	Freque	ncy/MHz	Board Execution		
EVB71120	-315		-A	antenna version	
	-433		-c	connector version	
	-868				
	-915				

Note:

available EVB setups

5. Package Description

The device MLX71120 is RoHS compliant.

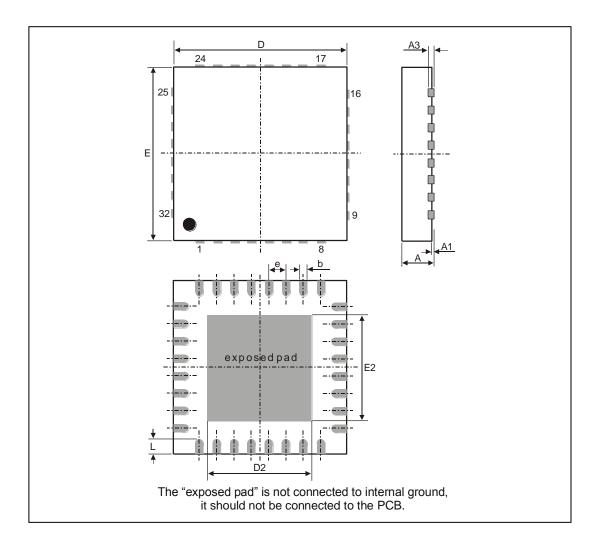


Fig. 8: 32L QFN 5x5 Quad

all Dime	nsion in r	nm								
	D	E	D2	E2	Α	A1	А3	L	е	b
min	4.75	4.75	3.00	3.00	0.80	0	0.20	0.3	0.50	0.18
max	5.25	5.25	3.25	3.25	1.00	0.05	0.20	0.5	0.50	0.30
all Dime	all Dimension in inch									
min	0.187	0.187	0.118	0.118	0.0315	0	0.0079	0.0118	0.0197	0.0071
max	0.207	0.207	0.128	0.128	0.0393	0.002		0.0197	0.0197	0.0118

REVISION 007 - JUNE 9, 2017 390127112001

300 to 930MHz Receiver Evaluation Board Description

5.1. Soldering Information

 The device MLX71120 is qualified for MSL3 with soldering peak temperature 260 deg C according to JEDEC J-STD-20

6. Reliability Information

This Melexis device is classified and qualified regarding soldering technology, solderability and moisture sensitivity level, as defined in this specification, according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 - "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)"
 - EIA/JEDEC JESD22-A113
 - "Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)"

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - "Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat"
- EIA/JEDEC JESD22-B106 and EN60749-15
 - "Resistance to soldering temperature for through-hole mounted devices"

Iron Soldering THD's (Through Hole Devices)

• EN60749-15

"Resistance to soldering temperature for through-hole mounted devices"

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

• EIA/JEDEC JESD22-B102 and EN60749-21 "Solderability"

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualification of **RoHS** compliant products (RoHS = European directive on the Restriction Of the Use of Certain Hazardous Substances) please visit the quality page on our website:

http://www.melexis.com/quality_leadfree.aspx

7. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

300 to 930MHz Receiver Evaluation Board Description

8. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

9. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified