
Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 1 of 16

3901190632 MLX90632 measurement modes

Contents

1 SCOPE .. 2

2 MEASUREMENT MODES .. 2

3 MEASUREMENT FLOWS ... 4

4 SPECIAL CONSIDERATIONS... 7

5 EXAMPLES FOR TYPICALLY USED MEASUREMENT MODES... 7

5.1 CONTINUOUS MEDICAL/STANDARD MODE EXAMPLE ... 8

5.2 CONTINUOUS EXTENDED MODE EXAMPLE ... 10

5.3 BURST MEDICAL/STANDARD MODE EXAMPLE .. 11

5.4 BURST EXTENDED MODE EXAMPLE .. 13

6 CONCLUSION ... 15

7 REVISION HISTORY ... 15

8 DISCLAIMER ... 16

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 2 of 16

3901190632 MLX90632 measurement modes

1 Scope
The MLX90632 is a small size, non-contact temperature sensor. As such, it can be used in various applications

which have different requirements regarding power consumption and refresh rate. In order to meet those

requirements, the MLX90632 offers distinct measurement modes. This document helps understanding and

implementing these measurement modes in the application.

2 Measurement modes
To control the measurement modes, register REG_CONTROL at address 0x3001 must be used. The bits that

control the measurement modes are described in Table 1

Table 1 – Register REG_CONTROL at address 0x3001

The temperature range modes and the power consumption modes described below can be combined in order

to achieve the most suitable performance.

Regarding the temperature range, the MLX90632B## (standard accuracy) offers just one measurement mode:

• Standard accuracy temperature range – from -20°C to 200°C.

With this MLX90632 device type the standard accuracy specification is valid for the full temperature range and

there is no option for extended temperature range.

The MLX90632D## (medical accuracy) offers a high accuracy in the medical range and standard accuracy in an

extended temperature range. Thus, if offers two measurement modes that can be selected via the

meas_select bits:

• Medical range with medical accuracy – from -20°C to 100°C. To select this mode set meas_select =

0x00.

• Extended range with standard accuracy – from -20°C to 200°C. To select this mode set meas_select =

0x11.

To control the power consumption of the sensor, both the standard accuracy and the medical accuracy devices

have the following modes:

• Continuous mode – this mode is suitable for measurement applications where a very low power con-

sumption is not a requirement. Temperature measurements are continuously ongoing and the tem-

perature data is updated accordingly at the selected refresh rate. This is the default measurement

mode of the MLX90632 sensor. In order to select it, mode[1:0] = 0b11 must be set. When in continu-

ous mode, the temperature data is always available after the initialization time has passed, but since

the device is always in active state, the typical power consumption is about 1mA.

• Step mode – this mode is suitable for measurement applications where a very tight control of the

measurement is required. In order to select it, mode[1:0] = 0b10 must be set. The device is powered

all the time and is in the active state. The power consumption is typically around 1mA. The device will

do one measurement upon request (when soc bit is set to 1) and will wait for the next command. This

Bits Parameter Description

11 sob
Start of Burst - starts a full table measurement when being in (sleeping)
step mode

8:4 meas_select select the type of measurement to be performed

3 soc
Start Of Conversion - starts a single measurement when being in (sleeping)
step mode

2:1 mode[1:0] defines the operating mode (step mode or continuous mode)

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 3 of 16

3901190632 MLX90632 measurement modes

mode should only be used when a precise control of the measurement timing is required. As the

thermal conditions are constantly changing, it is recommended that all the measurements from the

measurement table are done with as little delay as possible. In most cases it is recommended to use

the sleeping step mode instead.

• Sleeping step mode – this mode is suitable for measurement applications where a low power con-

sumption is required. This mode also allows for a fine control of the measurements. In order to select

it, mode[1:0] = 0b01 must be set. When in sleeping step mode, the device switches between two

states – the sleep state with a power consumption of about 1.5µA and the active state with a power

consumption of about 1mA. The normal state is the sleep state and the active state is entered only

when a measurement is triggered. The duration and repetition rate of the active state defines the

overall power consumption. If a measurement is never triggered, the power consumption would be

equal to the sleep current - around 1.5µA. Increasing the number of measurements triggered per time

period will increase the average power consumption.

Figure 1 – Sleeping step mode power consumption example for 20% duty cycle

Table 2 – Sleeping step mode power consumption

Note: The peak current would still be the current in active state

Duty cycle,
%

Idd, µA Description

0 1.5 (sleep) A measurement is never triggered

20 201.2
MLX90632 is measuring for 20% of the time e.g. 1 second measurement every 5
seconds

40 400.9
MLX90632 is measuring for 40% of the time e.g. 2 seconds measurement every 5
seconds

60 600.6
MLX90632 is measuring for 60% of the time e.g. 3 seconds measurement every 5
seconds

80 800.3
MLX90632 is measuring for 80% of the time e.g. 4 seconds measurement every 5
seconds

100 1000 (Idd) MLX90632 is measuring for 100% of the time

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 4 of 16

3901190632 MLX90632 measurement modes

3 Measurement flows
The different measurement modes may require different flows. In order to determine the state of the

MLX90632 device, one must access the REG_STATUS register at address 0x3FFF.

 Table 3 – Register STATUS at address 0x3FFF

Continuous standard or medical mode Write into REG_CONTROL register

1. Select continuous mode (default) mode[1:0] = 0b11

2. Select medical/standard mode (default) meas_select = 0x00

3. Measurement loop

a. Clear the new data flag new_data = 0

b. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

c. Read out all the required data If cycle_position = 1: RAM_4, RAM_5, RAM_6

If cycle_position = 2: RAM_7, RAM_8, RAM_9

d. Do all required pre-calculations

e. Calculate ambient temperature

f. Calculate object temperature

 Table 4 – Continuous standard/medical mode flow

Continuous extended mode Write into REG_CONTROL register

1. Verify that extended mode is supported EE_VERSION value at address 0x240B bits [14:8]

= 0x05

2. Select continuous mode (default) mode[1:0] = 0b11

3. Select extended mode meas_select = 0x11

4. Measurement loop

a. Clear the new data flag new_data = 0

b. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1. Do this until cycle_position becomes

0x13

c. Read out all the required data RAM_52, RAM_53, RAM_54

RAM_55, RAM_56, RAM_57

RAM_58, RAM_59, RAM_60

Bits Parameter Description

10 device_busy

Flag indicating that a measurement is being executed (1 = measurement
ongoing).
In sleep mode, this flag is always low.
In continuous mode, this flag is always high.
In soc-step mode, this flag is high during one measurement.
In sob-step mode, this flag is high till all measurements are finished

6:2 cycle_position
Indicates from which measurement (in the measurement table) the last
written data is coming

0 new_data

Customer should set bit to 0
When a measurement is done, the bit is set to 1
Customer can readout the data and reset the bit to 0

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 5 of 16

3901190632 MLX90632 measurement modes

d. Do all required pre-calculations

e. Calculate ambient temperature

f. Calculate object temperature

Table 5 – Continuous extended mode flow

Step standard or medical mode Write into REG_CONTROL register

1. Select step mode mode[1:0] = 0b10

2. Select medical/standard mode (default) meas_select = 0x00

3. Measurement loop

a. Clear the new data flag new_data = 0

b. Set soc bit to start a new

measurement

soc = 1

c. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

d. Clear the new data flag new_data = 0

e. Set soc bit to start a new

measurement

soc = 1

f. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

g. Read out all the required data RAM_4, RAM_5, RAM_6

RAM_7, RAM_8, RAM_9

h. Do all required pre-calculations

i. Calculate ambient temperature

j. Calculate object temperature

Table 6 – Step standard/medical mode flow

Step extended mode Write into REG_CONTROL register

1. Verify that extended mode is supported EE_VERSION value at address 0x240B bits [14:8]

= 0x05

2. Select step mode mode[1:0] = 0b10

3. Select extended mode meas_select = 0x11

4. Measurement loop

a. Clear the new data flag new_data = 0

b. Set soc bit to start a new

measurement

soc = 1

c. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

d. Clear the new data flag new_data = 0

e. Set soc bit to start a new

measurement

soc = 1

f. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

g. Clear the new data flag new_data = 0

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 6 of 16

3901190632 MLX90632 measurement modes

h. Set soc bit to start a new

measurement

soc = 1

i. Wait for new data Depending on the refresh rate wait for some

time. After that poll the new_data bit until it

becomes 1

j. Read out all the required data RAM_52, RAM_53, RAM_54

RAM_55, RAM_56, RAM_57

RAM_58, RAM_59, RAM_60

k. Do all required pre-calculations

l. Calculate ambient temperature

m. Calculate object temperature

Table 7 – Step extended mode flow

Sleeping step standard or medical burst mode Write into REG_CONTROL register

1. Select sleeping step mode mode[1:0] = 0b01

2. Select medical/standard mode (default) meas_select = 0x00

3. Measurement loop

a. Start a new burst measurement sob = 1

b. Wait for all the measurements

from the table to be performed

Depending on the refresh rate wait for some

time. After that poll the device_busy bit until it

becomes 0

c. Read out all the required data RAM_4, RAM_5, RAM_6

RAM_7, RAM_8, RAM_9

d. Do all required pre-calculations

e. Calculate ambient temperature

f. Calculate object temperature

Table 8 – Sleeping step standard/medical mode flow

Sleeping step extended burst mode Write into REG_CONTROL register

1. Verify that extended mode is supported EE_VERSION value at address 0x240B bits [14:8]

= 0x05

2. Select sleeping step mode (default) mode[1:0] = 0b01

3. Select extended mode meas_select = 0x11

4. Measurement loop

a. Start a new burst measurement sob = 1

b. Wait for all the measurements

from the table to be performed

Depending on the refresh rate wait for some

time. After that poll the device_busy bit until it

becomes 0

c. Read out all the required data RAM_52, RAM_53, RAM_54

RAM_55, RAM_56, RAM_57

RAM_58, RAM_59, RAM_60

d. Do all required pre-calculations

e. Calculate ambient temperature

f. Calculate object temperature

Table 9 – Sleeping step standard/medical mode flow

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 7 of 16

3901190632 MLX90632 measurement modes

4 Special considerations
• The average consumption in the burst modes can be controlled between Isleep and Idd by the sleep to

active state ratio

• Idd is the current in the active state – more information about it can be found in the datasheet – pa-

rameter IDD

• Isleep is the current in the sleep state – more information about it can be found in the datasheet – pa-

rameter IDDPR

• The peak consumption in the burst modes would still be Idd as this is the consumption in active state

• The parameters needed for the calculations that are being stored in the EEPROM could be extracted

only once after power-on and stored in RAM

• It is recommended to initialize the I2C lines by generating a stop condition after power-on

• The device should be put in stepping mode before doing EEPROM operations

• Depending on the application needs, the different modes can be combined

• The typical refresh times for medical and standard modes are

Table 10 – Sleeping step standard/medical mode flow

• The typical refresh times for extended mode are

Table 11 – Sleeping step standard/medical mode flow

5 Examples for typically used measurement modes
The measurement modes that should typically be used are:

• Continuous medical/standard mode

• Continuous extended mode

• Sleeping step medical/standard (burst) mode

• Sleeping step extended (burst) mode

EE_MEAS_1[10:8]
EE_MEAS_2[10:8]

Standard meas time [ms] Burst meas time [ms]

0 2000 4000
1 1000 2000

2 500 1000

3 250 500

4 125 250

5 62.5 125

6 31.25 62.5

7 15.625 31.25

EE_MEAS_17[10:8]
EE_MEAS_18[10:8]
EE_MEAS_19[10:8]

Standard meas time [ms] Burst meas time [ms]

0 6000 6000
1 3000 3000

2 1500 1500

3 750 750

4 375 375

5 200 200

6 100 100

7 50 50

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 8 of 16

3901190632 MLX90632 measurement modes

All of those measurement modes can be implemented using the MLX90632 library available at

https://github.com/melexis/mlx90632-library.git

There are several common things that need to be done to use the library:

• Make sure that BITS_PER_LONG is properly defined. This is a MCU specific value that is being used to

generate bit masks

• I2C function implementation – the I2C functions are specific for each MCU as they depend on the

available hardware. The prototypes of the I2C functions are listed in mlx90632_depends.h file.

• Implementation of certain timing functions – as with the I2C functions, the timings depend on the

available hardware and therefore need to be implemented for each MCU individually. The prototypes

of the required timing functions are listed in mlx90632_depends.h file.

• Declare the variables that would hold the parameter values from EEPROM. One can use global or local

storage.

• Declare variables to hold intermittent data for ambient_new_raw, ambient_old_raw, ob-

ject_new_raw and object_old_raw

• Declare variable to store the calculated temperatures – ambient and object

5.1 Continuous medical/standard mode example
#include "mlx90632.h"

/* Declare and implement here functions you find in mlx90632_depends.h */

/* Declare the variables to hold the EEPROM parameters values

 * The calibration parameters could also be declared as local variables */

 int32_t PR;

 int32_t PG;

 int32_t PT;

 int32_t PO;

 int32_t Ea;

 int32_t Eb;

 int32_t Fa;

 int32_t Fb;

 int32_t Ga;

 int16_t Ha;

 int16_t Hb;

 int16_t Gb;

 int16_t Ka;

int main(void)

{

 int32_t ret = 0; /**< Variable will store return values */

 double pre_ambient; /**< Ambient pre-process */

 double pre_object; /**< Object pre-process*/

 double ambient; /**< Ambient temperature in degrees Celsius */

 double object; /**< Object temperature in degrees Celsius */

 /* ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw */

https://github.com/melexis/mlx90632-library.git

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 9 of 16

3901190632 MLX90632 measurement modes

 int16_t ambient_new_raw;

 int16_t ambient_old_raw;

 int16_t object_new_raw;

 int16_t object_old_raw;

 /* Initialize the I2C lines */

 /* Initialize the device and get a clean start */

 ret = mlx90632_init();

 if(ret == 0){

 /* Only medical/standard mode is supported */

 }else if(ret == ERANGE){

 /* Extended mode is also supported */

 }else{

 /* Something went wrong or invalid device */

 };

 /* Put the device in sleeping step mode in order to safely read the EEPROM */

 ret = mlx90632_set_meas_type(MLX90632_MTYP_MEDICAL_BURST);

 /* Read sensor EEPROM registers needed for calculations */

 /* Set emissivity */

 mlx90632_set_emissivity(1.00);

 /* Set continuous medical/standard measurement mode */

 if (mlx90632_get_meas_type() != MLX90632_MTYP_MEDICAL)

 ret = mlx90632_set_meas_type(MLX90632_MTYP_MEDICAL);

 /* The following instructions could be looped if the mode is not being switched

 * Get raw data for ambient and object temperature calculation */

 ret = mlx90632_read_temp_raw(&ambient_new_raw, &ambient_old_raw,

 &object_new_raw, &object_old_raw);

 if(ret < 0)

 /* Something went wrong - abort */

 return ret;

 /* Now start calculations (no more i2c accesses) */

 /* Calculate ambient temperature */

 ambient = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,

 PT, PR, PG, PO, Gb);

 /* Get pre-processed temperatures needed for object temperature calculation */

 pre_ambient = mlx90632_preprocess_temp_ambient(ambient_new_raw,

 ambient_old_raw, Gb);

 pre_object = mlx90632_preprocess_temp_object(object_new_raw, object_old_raw,

 ambient_new_raw, ambient_old_raw,

 Ka);

 /* Calculate object temperature */

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 10 of 16

3901190632 MLX90632 measurement modes

 object = mlx90632_calc_temp_object(pre_object, pre_ambient, Ea, Eb, Ga, Fa, Fb, Ha, Hb);

 /* Do something with the temperature data */

}

5.2 Continuous extended mode example
#include "mlx90632.h"

/* Declare and implement here functions you find in mlx90632_depends.h */

/* Declare the variables to hold the EEPROM parameters values

 * The calibration parameters could also be declared as local variables */

 int32_t PR;

 int32_t PG;

 int32_t PT;

 int32_t PO;

 int32_t Ea;

 int32_t Eb;

 int32_t Fa;

 int32_t Fb;

 int32_t Ga;

 int16_t Ha;

 int16_t Hb;

 int16_t Gb;

 int16_t Ka;

int main(void)

{

 int32_t ret = 0; /**< Variable will store return values */

 double pre_ambient; /**< Ambient pre-process */

 double pre_object; /**< Object pre-process*/

 double ambient; /**< Ambient temperature in degrees Celsius */

 double object; /**< Object temperature in degrees Celsius */

 /* ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw */

 int16_t ambient_new_raw;

 int16_t ambient_old_raw;

 int16_t object_new_raw;

 int16_t object_old_raw;

 /* Initialize the I2C lines */

 /* Initialize the device and get a clean start */

 ret = mlx90632_init();

 if(ret == 0){

 /* Only medical/standard mode is supported */

 }else if(ret == ERANGE){

 /* Extended mode is also supported */

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 11 of 16

3901190632 MLX90632 measurement modes

 }else{

 /* Something went wrong or invalid device */

 };

 /* Put the device in sleeping step mode in order to safely read the EEPROM */

 ret = mlx90632_set_meas_type(MLX90632_MTYP_MEDICAL_BURST);

 /* Read sensor EEPROM registers needed for calculations */

 /* Set emissivity */

 mlx90632_set_emissivity(1.00);

 /* Set continuous extended measurement mode */

 if (mlx90632_get_meas_type() != MLX90632_MTYP_EXTENDED)

 ret = mlx90632_set_meas_type(MLX90632_MTYP_EXTENDED);

 /* The following instructions could be looped if the mode is not being switched

 * Get raw data for ambient and object temperature calculation */

 ret = mlx90632_read_temp_raw_extended(&ambient_new_raw, &ambient_old_raw,

 &object_new_raw);

 if(ret < 0)

 /* Something went wrong - abort */

 return ret;

 /* Now start calculations (no more i2c accesses) */

 /* Calculate ambient temperature */

 ambient = mlx90632_calc_temp_ambient_extended(ambient_new_raw, ambient_old_raw,

 PT, PR, PG, PO, Gb);

 /* Get pre-processed temperatures needed for object temperature calculation */

 pre_ambient = mlx90632_preprocess_temp_ambient_extended(ambient_new_raw,

 ambient_old_raw, Gb);

 pre_object = mlx90632_preprocess_temp_object_extended(object_new_raw,

 ambient_new_raw, ambient_old_raw,

 Ka);

 /* Calculate object temperature */

 object = mlx90632_calc_temp_object_extended(pre_object, pre_ambient, ambient, Ea, Eb, Ga, Fa, Fb, Ha,

Hb);

 /* Do something with the temperature data */

}

5.3 Burst medical/standard mode example
#include "mlx90632.h"

/* Declare and implement here functions you find in mlx90632_depends.h */

/* Declare the variables to hold the EEPROM parameters values

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 12 of 16

3901190632 MLX90632 measurement modes

 * The calibration parameters could also be declared as local variables */

 int32_t PR;

 int32_t PG;

 int32_t PT;

 int32_t PO;

 int32_t Ea;

 int32_t Eb;

 int32_t Fa;

 int32_t Fb;

 int32_t Ga;

 int16_t Ha;

 int16_t Hb;

 int16_t Gb;

 int16_t Ka;

int main(void)

{

 int32_t ret = 0; /**< Variable will store return values */

 double pre_ambient; /**< Ambient pre-process */

 double pre_object; /**< Object pre-process*/

 double ambient; /**< Ambient temperature in degrees Celsius */

 double object; /**< Object temperature in degrees Celsius */

 /* ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw */

 int16_t ambient_new_raw;

 int16_t ambient_old_raw;

 int16_t object_new_raw;

 int16_t object_old_raw;

 /* Initialize the I2C lines */

 /* Initialize the device and get a clean start */

 ret = mlx90632_init();

 if(ret == 0){

 /* Only medical/standard mode is supported */

 }else if(ret == ERANGE){

 /* Extended mode is also supported */

 }else{

 /* Something went wrong or invalid device */

 };

 /* Put the device in sleeping step mode in order to safely read the EEPROM */

 ret = mlx90632_set_meas_type(MLX90632_MTYP_MEDICAL_BURST);

 /* Read sensor EEPROM registers needed for calculations */

 /* Set emissivity */

 mlx90632_set_emissivity(1.00);

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 13 of 16

3901190632 MLX90632 measurement modes

 /* Set burst medical/standard mode */

 if (mlx90632_get_meas_type() != MLX90632_MTYP_MEDICAL_BURST)

 ret = mlx90632_set_meas_type(MLX90632_MTYP_MEDICAL_BURST);

 /* The following instructions could be looped if the mode is not being switched

 * Get raw data for ambient and object temperature calculation */

 ret = mlx90632_read_temp_raw_burst(&ambient_new_raw, &ambient_old_raw,

 &object_new_raw, &object_old_raw);

 if(ret < 0)

 /* Something went wrong - abort */

 return ret;

 /* Now start calculations (no more i2c accesses) */

 /* Calculate ambient temperature */

 ambient = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,

 PT, PR, PG, PO, Gb);

 /* Get pre-processed temperatures needed for object temperature calculation */

 pre_ambient = mlx90632_preprocess_temp_ambient(ambient_new_raw,

 ambient_old_raw, Gb);

 pre_object = mlx90632_preprocess_temp_object(object_new_raw, object_old_raw,

 ambient_new_raw, ambient_old_raw,

 Ka);

 /* Calculate object temperature */

 object = mlx90632_calc_temp_object(pre_object, pre_ambient, Ea, Eb, Ga, Fa, Fb, Ha, Hb);

 /* Do something with the temperature data */

 /* The measurement is done and the MLX90632 device is in sleep mode

 * Waiting here will determine the active to sleep mode ratio, which would

 * determine the average power consumption over time */

}

5.4 Burst extended mode example
#include "mlx90632.h"

/* Declare and implement here functions you find in mlx90632_depends.h */

/* Declare the variables to hold the EEPROM parameters values

 * The calibration parameters could also be declared as local variables */

 int32_t PR;

 int32_t PG;

 int32_t PT;

 int32_t PO;

 int32_t Ea;

 int32_t Eb;

 int32_t Fa;

 int32_t Fb;

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 14 of 16

3901190632 MLX90632 measurement modes

 int32_t Ga;

 int16_t Ha;

 int16_t Hb;

 int16_t Gb;

 int16_t Ka;

int main(void)

{

 int32_t ret = 0; /**< Variable will store return values */

 double pre_ambient; /**< Ambient pre-process */

 double pre_object; /**< Object pre-process*/

 double ambient; /**< Ambient temperature in degrees Celsius */

 double object; /**< Object temperature in degrees Celsius */

 /* ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw */

 int16_t ambient_new_raw;

 int16_t ambient_old_raw;

 int16_t object_new_raw;

 int16_t object_old_raw;

 /* Initialize the I2C lines */

 /* Initialize the device and get a clean start */

 ret = mlx90632_init();

 if(ret == 0){

 /* Only medical/standard mode is supported */

 }else if(ret == ERANGE){

 /* Extended mode is also supported */

 }else{

 /* Something went wrong or invalid device */

 };

 /* Put the device in sleeping step mode in order to safely read the EEPROM */

 ret = mlx90632_set_meas_type(MLX90632_MTYP_EXTENDED_BURST);

 /* Read sensor EEPROM registers needed for calculations */

 /* Set emissivity */

 mlx90632_set_emissivity(1.00);

 /* Set burst extended measurement mode */

 if (mlx90632_get_meas_type() != MLX90632_MTYP_EXTENDED_BURST)

 ret = mlx90632_set_meas_type(MLX90632_MTYP_EXTENDED_BURST);

 /* The following instructions could be looped if the mode is not being switched

 * Get raw data for ambient and object temperature calculation */

 ret = mlx90632_read_temp_raw_extended_burst(&ambient_new_raw, &ambient_old_raw,

 &object_new_raw);

 if(ret < 0)

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 15 of 16

3901190632 MLX90632 measurement modes

 /* Something went wrong - abort */

 return ret;

 /* Now start calculations (no more i2c accesses) */

 /* Calculate ambient temperature */

 ambient = mlx90632_calc_temp_ambient_extended(ambient_new_raw, ambient_old_raw,

 PT, PR, PG, PO, Gb);

 /* Get pre-processed temperatures needed for object temperature calculation */

 pre_ambient = mlx90632_preprocess_temp_ambient_extended(ambient_new_raw,

 ambient_old_raw, Gb);

 pre_object = mlx90632_preprocess_temp_object_extended(object_new_raw,

 ambient_new_raw, ambient_old_raw,

 Ka);

 /* Calculate object temperature */

 object = mlx90632_calc_temp_object_extended(pre_object, pre_ambient, ambient, Ea, Eb, Ga, Fa, Fb, Ha,

Hb);

 /* Do something with the temperature data */

 /* The measurement is done and the MLX90632 device is in sleep mode

 * Waiting here will determine the active to sleep mode ratio, which would

 * determine the average power consumption over time */

}

6 Conclusion
The MLX90632 temperature sensor is a flexible device that can be used in a wide range of applications. The

different measurement modes allow for a low power consumption while maintaining the high accuracy of the

calculated temperatures.

Melexis provides an API that is publicly available at https://github.com/melexis/mlx90632-library.git

7 Revision history

Table 12 – Revision history

Revision Date Change history

001 15-Feb-23 Creation

https://github.com/melexis/mlx90632-library.git

Application note
MLX90632 measurement modes

REVISION 001 – 15 February 2023 Application note Page 16 of 16

3901190632 MLX90632 measurement modes

8 Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as
is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the
results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in
this document. Customer will follow the practices contained in this document under its sole responsibility. This documenta-
tion is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not lim-
ited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees
and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the
use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writ-
ing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore,
before placing orders or prior to designing the product into a system, users or any third party should obtain the latest ver-
sion of the relevant information.
Users or any third party must determine the suitability of the product described in this document for its application, includ-
ing the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export
might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be
suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability
applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by
Melexis. The product may not be used for the following applications subject to export control regulations: the development,
production, processing, operation, maintenance, storage, recognition or proliferation of:
1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such
weapons;
2. civil firearms, including spare parts or ammunition for such arms;
3. defense related products, or other material for military use or for law enforcement;
4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to
persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked “restricted” or with similar words, or if in any case the content of this document is to be reason-
ably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party,
any part of the document without Melexis’ express written consent. The recipient shall take all necessary measures to apply
and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence
with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential in-
formation, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the pur-
pose for which this document was received, on a strictly need to know basis and providing that such persons to whom the
document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the docu-
ment only in connection with the purpose for which this document was received, and reproduce document only to the ex-
tent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its
customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will
be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaim-
er will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the
other provisions.
The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2023)

IATF 16949 and ISO 14001 Certified

Happy to help you! www.melexis.com/technical-inquiry

http://www.melexis.com/technical-inquiry

