

VAT BE 0435.604.729

Transportstraat 1

3980 Tessenderlo

Phone: +32 13 67 07 95

Mobile: +32 491 15 74 18

Fax: +32 13 67 07 70

www.melexis.com

MLX83203-2,MLX83100 Automotive Pre-Driver

 Custom SPI Interface for Access to EEPROM in Application

Stefan Poels

SEPTEMBER 14, 2016

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 2 of 17 Revision 4.0 – SEPTEMBER 2016

Contents

1. Scope ... 3

2. Description .. 4

3. Custom SPI to Read/Program EEPROM .. 5

3.1. “SPI Program Mode” ... 5

3.1.1. SPI Signals .. 5

3.2. Entering “SPI Program Mode” .. 6

3.3. Exiting “SPI Program Mode” ... 7

3.4. Protocol ... 7

3.5. Registers Description .. 7

3.5.1. MOSI-frame ... 8

3.5.2. MISO-frame ... 8

3.6. Communication ... 9

3.6.1. Transceiving a MOSI/MISO-frame ... 9

3.6.2. Read Instruction .. 10

3.6.3. Write Instruction ... 11

4. Examples ... 12

4.1. Successful Read Instruction .. 12

4.2. Read Delay too Small .. 13

4.3. Odd Parity Bit Error ... 14

4.4. Wrong Number of Clock Periods ... 15

4.5. Successful Write Instruction... 16

5. Revision History ... 17

6. Disclaimer .. 17

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 3 of 17 Revision 4.0 – SEPTEMBER 2016

1. Scope

This application note is to be used in combination with the corresponding pre-driver datasheet.

The goal of this application note is to describe the custom SPI interface for access to EEPROM. This interface
allows the user to check the default configuration by reading the different bytes. It is also explained how the user
can change the default configuration and can verify correct communication. In the end some examples with
scope plots are available to show correct and incorrect communication.

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 4 of 17 Revision 4.0 – SEPTEMBER 2016

2. Description

The MLX83203-02 (MLX83100) are three (two) phase pre-drivers, also called ‘bridge’ or ‘gate’ driver, IC with
integrated current sense amplifier. This device is used to drive brushless (brushed) DC motors in combination
with a microcontroller and six (four) discrete power N-FETs.

The device is able to control six (four) external N-FETs. The high side gate drivers are supplied via bootstrap
circuits. The trickle charge pump allows 100% PWM operation despite the use of bootstrap capacitors.

The device comprises various monitoring and protection functions, including under voltage and over voltage
detection at multiple internal voltage nodes, over temperature detection, drain-source and gate-source voltage
monitoring of the external N-FETs.

An integrated fast, high-bandwidth, low offset current sense amplifier allows for precise torque control with
programmable gain selection.

The pre-driver provides an EEPROM for configurability, avoiding the need for a high pin-count package and/or
external components for configuration. The configuration allows the user to optimize the pre-driver’s operation
for different applications by configurability of the current sense amplifier and protection and diagnostic
functions. This application note describes how the configuration can be done in the application.

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 5 of 17 Revision 4.0 – SEPTEMBER 2016

3. Custom SPI to Read/Program EEPROM

The pre-driver provides an EEPROM for configuration of the current sense amplifier and protection and
diagnostic functions for optimization to the application requirements. The configuration can be done at customer
production by using the PTC-04, or in the application by the microcontroller via a custom program interface.

The EEPROM is composed of 6 bytes for user configurability. The first two bytes are not used for the internal
configuration of the pre-driver, and can thus be used by the user for traceability purposes. The other 4 bytes are
used for configuration of the current sense amplifier and configuration of the diagnostics.

3.1. “SPI Program Mode”

The EEPROM memory can be accessed through a custom SPI interface. It allows the user to read/program the
EEPROM by the microcontroller in the application. This custom interface re-uses the low-side driver pins.

Since the same pins are used for both reading/writing the EEPROM and for controlling the motor, the EEPROM is
only accessible when the motor is not running. Furthermore it is necessary to apply a certain sequence of
conditions before the pre-driver will enter the “SPI Program Mode”. Once in this mode, the EEPROM can be
accessed for reading and writing, until the IC enters “Normal Mode” again and motor operation is possible.

Figure 3-1 Custom SPI Read/Program Interface

3.1.1. SPI Signals

When the pre-driver is in SPI mode the EEPROM is accessible via the SPI port. The 16 bit SPI shift register is
controlled by 4 signals:

SPI Signal Pre-Driver Pin Color on scope plots

CSB ICOM Yellow

MOSI FETB3 Blue

CLK FETB2 Purple

MISO FETB1 (MISO) Green

Table 3-1 SPI signals

Driver Logic

Custom

SPI
EEPROM

Diagnostics

EN

FETTx

FETBx

ICOM

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 6 of 17 Revision 4.0 – SEPTEMBER 2016

3.2. Entering “SPI Program Mode”

The pre-driver will enter from “Normal Mode” into “SPI Program Mode” when all
below conditions are satisfied.

Since ICOM is used as CSB signal, ICOM should not be communicating any errors. So
first any pending errors have to be acknowledged.

In order not to have the SPI communication disturb the motor, all gate driver
outputs should be disabled by pulling EN low. Next the driver inputs need to be
disabled by pulling all PWM input signals for the high side MOSFETs low (FETTx), and
PWM input signals for the low side MOSFETs high (FETBx).

If all these conditions are satisfied, a low pulse of time tSPI_ISU (specified in the
datasheet) on ICOM will force the pre-driver to enter the “SPI Program Mode”.

After applying this pulse, the SPI communication can be checked by transmitting a
(dummy) MOSI frame and checking if the pre-driver responds on the MISO line.

Figure 3-3 Scope plot of the Pre-Driver Entering the “SPI Program Mode”

Figure 3-2 Entering the "SPI Program Mode"

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 7 of 17 Revision 4.0 – SEPTEMBER 2016

3.3. Exiting “SPI Program Mode”

The pre-driver will exit the “SPI Program Mode” when the enable input EN is pulled high. Similar to when the pre-
driver comes out of POR, after leaving the “SPI Program Mode” the pre-driver will be blocked until the data has
been copied to the registers. This means before entering “Normal Mode” any ongoing EEPROM write will be
completed and the EEPROM will be copied into the registers. During this time ICOM will be kept low. ICOM
returning to its default high state signals when the pre-driver is ready for normal operation.

3.4. Protocol

Once the IC is in “SPI Program Mode” the microcontroller can read/program the EEPROM, following the protocol
depicted below.

Figure 3-4 SPI Protocol (LSB first)

3.5. Registers Description

MOSI [15:0]

Bit [15] Bit [14] Bit [13] Bit [12] Bit [11] Bit [10] Bit [9] Bit [8]

MOSI_PAR x x CMD [1:0] MOSI_DATA [7:5]

Bit [7] Bit [6] Bit [5] Bit [4] Bit [3] Bit [2] Bit [1] Bit [0]

MOSI_DATA [4:1] x ADDRESS [2:0]

MISO[15:0]

Bit [15] Bit [14] Bit [13] Bit [12] Bit [11] Bit [10] Bit [9] Bit [8]

MISO_PAR COMM_ERR EE_READY CMD [1:0] MISO_DATA [7:5]

Bit [7] Bit [6] Bit [5] Bit [4] Bit [3] Bit [2] Bit [1] Bit [0]

MISO_DATA [4:1] x ADDRESS [2:0]

Table 3-2 MOSI / MISO Registers: Frame Description

n+2[0] n+2[1]

CSB

CLK

MOSI

MISO

Latch data into

 MOSI register on

CLK Rising edge

n[0]

READ INSTRUCTION

If COMM_ERR = 0

Start EE_RD

EE_READY=1

Data in

 DATA latch

Copy latched DATA into

MISO [10:4]

MISO[10:4] contains DATA

requested in previous Read

instruction

n[1] n[2]

n[0] n[1]

n+1[0] n+1[1] n+1[2]n[1]n[15]

n[15]

Data on MISO stable

(valid) while CLK is

LOW

WRITE INSTRUCTION

n[1]n+1[15]

EE_READY=1

Data in

 DATA LATCH register

If comm_err = 0

Start EE_WR
Copy latched DATA

(not read from EEPROM!)

 into MISO [10:4]

MISO[10:4] contains previous

MOSI[10:4] DATA

n+1[0] n+1[1] n+1[15] n+2[0] n+2[1]

> tEE_WR>tEE_RD

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 8 of 17 Revision 4.0 – SEPTEMBER 2016

3.5.1. MOSI-frame

The 16-bit MOSI frame transmitted by the microcontroller to the pre-driver consists of the 7-bit data that needs
to be written in EEPROM (not important for read command), the 3-bit address that needs to be read/written and
the 2-bit read/write command. The MOSI frame is then completed with some dummy bits and by calculating and
adding an odd parity bit in the end.

3.5.2. MISO-frame

The MISO frame is transmitted by the pre-driver to the microcontroller. When the previous instruction was a
write instruction, the 16-bit MISO frame contains the 7-bit data that needed to be written. This can be used as a
first validation of the write cycle. When the previous instruction was a read instruction, the 16-bit MISO frame
contains the 8-bit data read from EEPROM.

In both cases the MISO frame contains the address it used to read/write EEPROM and the read/write command
itself. Further the MISO frame gives some communication diagnostics, see below Table 3-3.

Bit Description

ADDRESS Address of the byte in EEPROM that needs to be read/programmed.

MOSI_DATA[7:1] For write command, the data that needs to be written. Don’t care for any read command.

MISO_DATA[7:1] After a write it returns the written data, after a read instruction the data read from EEPROM.

CMD [1:0]

Read/Write command
00: EE_RD: Read command
01: EE_WR: Write command
10: EE_RDAW1
11: EE_RDAW2

EE_READY

Reading/writing the EEPROM takes a certain time, specified by tEE_RD and tEE_WR respectively.
These times define the minimum time CSB (ICOM) has to remain high between two SPI-
frames in order to finish the read/ write action. As soon as the read/write action starts, the
EE_READY bit is reset. After completion of the read/write action the bit is set. If the
read/write delay between SPI-frames was long enough to execute the read/write action, the
EE_READY bit will thus be set, signaling the read/write action was finished. If the time was
too short, the bit will still be ‘0’.

COMM_ERR

This bit indicates if the previous MOSI-frame was received correctly. If no communication
error occurred the bit will be reset, and the read/write action was started as soon as CSB
was pulled high. If a communication error occurred in the previous MOSI-frame the
read/write command was not executed. Possible communication errors are:
Odd parity bit was not correct
Number of clock periods was not equal to 16

MOSI_PAR,
MISO_PAR

Odd parity bit of the current MOSI/MISO frame.

Table 3-3 MOSI/MISO Registers: Bit Description

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 9 of 17 Revision 4.0 – SEPTEMBER 2016

3.6. Communication

3.6.1. Transceiving a MOSI/MISO-frame

Once the microcontroller prepared the MOSI frame
(see paragraph 3.5.1) it can transmit it to the pre-
driver.

During each SPI cycle CSB (ICOM) needs to be pulled
low. The clock (FETB2) starts with a low clock signal.

The SPI communication starts by transmission of the
first bit of the MOSI frame on FETB3.

Next the clock (FETB2) is pulled high and from this
moment the first MOSI bit is valid and will be read by
the pre-driver.

The clock is kept high for half a clock cycle to give the
pre-driver the time to read the first bit.

Then the clock is pulled low again and kept low for
another half a clock cycle. During this low time, the
first MISO bit from the pre-driver is valid and can be
read by the MCU.

This sequence of writing the MOSI and reading the
MISO, while setting the clock accordingly, is repeated
for the other 15 bits of the SPI frame.

Once all 16 bits of the MOSI frame are transmitted
and all 16 bits of the MISO frame are received the SPI
cycle is over and CSB needs to be deactivated by
releasing ICOM.

On the rising edge of ICOM the reading/writing of
EEPROM will start, if no communication error
occurred.

The received MISO frame needs to be decoded,
according to paragraph 3.5.2, and can then be used
to validate the read/write instruction.

Figure 3-5 Transceiving a MOSI/MISO frame

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 10 of 17 Revision 4.0 – SEPTEMBER 2016

3.6.2. Read Instruction

In order to read one or more bytes of the EEPROM, the
microcontroller has to transceive at least two SPI frames. The
first frame is to send the read command, the second frame is for
the pre-driver to send back the result of this read instruction.

The first MOSI(N)-frame is to be composed of the read
command and address to read from, completed with the correct
odd parity bit , according to paragraph 3.5.1. Next this MOSI(N)-
frame is transmitted to the pre-driver to start the read
instruction.

After receive of the read instruction in MOSI(N), and if no
communication error is detected, the pre-driver starts the read
instruction at the specific address as soon as CSB (ICOM) is pulled
high. If CSB is kept high long enough for the pre-driver to execute
and finish the read action, it will transmit the read data on the
next MISO(N+1)-frame. Otherwise it will report the read

instruction is still on-going. This EEPROM read delay is specified
by tEE_RD in the datasheet.

During the second the SPI-frame the pre-driver will send the result of the read instruction on MISO(N+1). The
MOSI(N+1) message that is send is not important. This means that if the user wants to read a single byte of the
EEPROM, the same MOSI(N)-frame can be used. However if more bytes need to be read, the MCU can send the
read instruction for the next byte to minimize the total time required for reading the whole EEPROM.

The microcontroller can check if the received MISO(N+1) frame is valid to ensure the data is not corrupted. The
data is valid if:

 COM_ERR = 0:
No communication error occurred during the previous MOSI(N) frame, meaning the read command was
received correctly.

 EE_READY = 1:
The read delay was long enough for the pre-driver to finish the read instruction before the falling edge of
CSB.

 MISO_PAR = correct:
The odd parity bit in the MISO(N+1) frame is correct.

To verify correct programming of a byte in EEPROM two different read commands have to checked sequentially:

 EE_RDAW1

 EE_RDAW2

Note that to read a byte from EEPROM one read cycle with the normal EE_RD command is sufficient.

Figure 3-6 Read Instruction

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 11 of 17 Revision 4.0 – SEPTEMBER 2016

3.6.3. Write Instruction

The pre-driver provides different configuration options through the EEPROM memory. In order to program one of
the EEPROM bytes, MOSI(N) frame is to be composed according to paragraph 3.5.1 with the address and data it
wants to write, the write command and the correct odd parity bit.

After transmission of this MOSI(N)-frame the pre-driver will start the execution of the write instruction as soon as
CSB (ICOM) is pulled high and no communication error has occurred. In order for the pre-driver to finish the write
instruction it needs a minimum write delay, specified by tEE_WR in the datasheet.

On the first MISO(N+1)-frame after the write command, it can be checked if the write command was received
correctly, and the status of write cycle. The next two SPI-frames are used to validate the write execution.

Verification step 1: Using MISO(N+1):

The MISO(N+1) frame is valid if:

 Correct odd parity bit in MISO(N+1)

The write instruction was received correctly if:

 COM_ERR = 0:

The write instruction was finished if:

 EE_READY = 1:

The correct data is used to write EEPROM if:

 MISO_data(N+1) = MOSI_data(N)

Verification step 2: Using MISO(N+2):

After EE_RDAW1 instruction in MOSI(N+1), the data in EEPROM is
returned in MISO(N+2). This data is valid if:

 The odd parity bit in MISO(N+2) is correct.

 COM_ERR = 0

The read instruction was finished if:

 EE_READY = 1:

The correct data is in EEPROM if:

 MISO_data(N+2) = MOSI_data(N)

Verification step 3: Using MISO(N+3):

After EE_RDAW2 instruction in MOSI(N+2), the data in EEPROM is
returned in MISO(N+3). This data is valid if:

 The odd parity bit in MISO(N+3) is correct.

 COM_ERR = 0

The read instruction was finished if:

 EE_READY = 1:

The correct data is in EEPROM if:

 MISO__data(N+3) = MOSI_data(N) Figure 3-7 Write Instruction

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 12 of 17 Revision 4.0 – SEPTEMBER 2016

4. Examples

4.1. Successful Read Instruction

An example of a successful read instruction is shown in Figure 4-1. The received EEPROM data in this example is
valid because:

 MISO[14] : COM_ERR = 0: the read command was received correctly

 MISO[13] : EE_READY = 1: the read instruction was completed and thus the MISO-
 frame contains the requested EEPROM data

 MISO[15] : the odd parity bit is correct: no bit errors in the MISO-frame

Figure 4-1 Scope plot of a successful SPI read instruction

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 13 of 17 Revision 4.0 – SEPTEMBER 2016

4.2. Read Delay too Small

If the EEPROM read delay between the first and second SPI cycle is too small, the pre-driver does not have
enough time to finish the read instruction. The data transmitted in the MISO(N+1) frame is thus not the
requested EEPROM data. This is signaled via:

 MISO[13] : EE_READY = 0: the read instruction is still on-going

Figure 4-2 Scope plot of an SPI read instruction where the EEPROM read delay is set too small

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 14 of 17 Revision 4.0 – SEPTEMBER 2016

4.3. Odd Parity Bit Error

One of the bits in a MOSI frame is the odd parity bit. If this odd parity bit is not calculated correctly, the pre-
driver will see this as a communication error. The read command will not be executed. This error will be
communicated back to the microcontroller in the next MISO(N+1) frame.

 MISO[14] : COM_ERR = 1: the read command was not received correctly and
 thus the read instruction is not started

Figure 4-3 Scope plot of an SPI read instruction with wrong odd parity bit

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 15 of 17 Revision 4.0 – SEPTEMBER 2016

4.4. Wrong Number of Clock Periods

Similar to the previous case, where the odd parity bit was not set correctly, a wrong number of clock periods will
again cause a communication error. This error is communicated back to the MCU in the next MISO(N+1) frame:

 MISO[14] : COM_ERR = 1: the read command was not received correctly and
 thus the read instruction is not started

Figure 4-4 Scope plot of an SPI read instruction with a wrong number of clock periods

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 16 of 17 Revision 4.0 – SEPTEMBER 2016

4.5. Successful Write Instruction

An example of a successful write instruction is shown in Figure 4-5.

Figure 4-5 Scope plot of a successful SPI write instruction

MLX83203-2,MLX83100 Automotive Pre-Driver
EVB83203 for Brushed DC Applications with MLX83100

Page 17 of 17 Revision 4.0 – SEPTEMBER 2016

5. Revision History

Revision Date Description

2.0 26-02-13 First release

3.0 22-07-14 General update according to new template

4.0 14-09-16 New Melexis branding

Table 5-1 Revision history

6. Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its

Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the

information set forth herein or regarding the freedom of the described devices from patent infringement.

Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,

prior to designing this product into a system, it is necessary to check with Melexis for current information.

This product is intended for use in normal commercial applications. Applications requiring extended

temperature range, unusual environmental requirements, or high reliability applications, such as military,

medical life-support or life-sustaining equipment are specifically not recommended without additional

processing by Melexis for each application. The information furnished by Melexis is believed to be correct

and accurate. However, Melexis shall not be liable to recipient or any third party for any damages,

including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of

business or indirect, special incidental or consequential damages, of any kind, in connection with or arising

out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient

or any third party shall arise or flow out of Melexis’ rendering of technical or other services.

© 2016 Melexis NV. All rights reserved.

	1. Scope
	2. Description
	3. Custom SPI to Read/Program EEPROM
	3.1. “SPI Program Mode”
	3.1.1. SPI Signals

	3.2. Entering “SPI Program Mode”
	3.3. Exiting “SPI Program Mode”
	3.4. Protocol
	3.5. Registers Description
	3.5.1. MOSI-frame
	3.5.2. MISO-frame

	3.6. Communication
	3.6.1. Transceiving a MOSI/MISO-frame
	3.6.2. Read Instruction
	3.6.3. Write Instruction

	4. Examples
	4.1. Successful Read Instruction
	4.2. Read Delay too Small
	4.3. Odd Parity Bit Error
	4.4. Wrong Number of Clock Periods
	4.5. Successful Write Instruction

	5. Revision History
	6. Disclaimer

